(3/4)k+(1/2)=8

Simple and best practice solution for (3/4)k+(1/2)=8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)k+(1/2)=8 equation:



(3/4)k+(1/2)=8
We move all terms to the left:
(3/4)k+(1/2)-(8)=0
Domain of the equation: 4)k!=0
k!=0/1
k!=0
k∈R
determiningTheFunctionDomain (3/4)k-8+(1/2)=0
We add all the numbers together, and all the variables
(+3/4)k-8+(+1/2)=0
We multiply parentheses
3k^2-8+(+1/2)=0
We get rid of parentheses
3k^2-8+1/2=0
We multiply all the terms by the denominator
3k^2*2+1-8*2=0
We add all the numbers together, and all the variables
3k^2*2-15=0
Wy multiply elements
6k^2-15=0
a = 6; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·6·(-15)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*6}=\frac{0-6\sqrt{10}}{12} =-\frac{6\sqrt{10}}{12} =-\frac{\sqrt{10}}{2} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*6}=\frac{0+6\sqrt{10}}{12} =\frac{6\sqrt{10}}{12} =\frac{\sqrt{10}}{2} $

See similar equations:

| 4(y-0.2=) | | 3125^2x+3=625 | | 4.8=√6x | | 11m=32 | | -4(-2x-2)+x-2=-28 | | x0.1=11 | | 1/2c=6.c= | | 1/2c=6c= | | 5a+2·2=32 | | 65=b+7 | | 15.5=x+13.8 | | 1/2x30=0 | | 2.5j+j=0 | | -(2.5+i)=5.5 | | x+2.3=3.7 | | 3+5u=15 | | x+15.4=17.7 | | 8.3(7e-5)=3 | | 2(3x+2)-3(4-x)=x+18 | | 3(x+4)=5(x-6)-32 | | (w-6)^2+2=10 | | -3n-14=25 | | 2a-7+3a=2a-16 | | x+0.15x=5000 | | 29=4x+8-11 | | -4+5w=8w-10 | | 4d×2+4=16 | | x+0.15x=1456 | | −8x+5=-6x+3−6x+3 | | x+.15x=1456 | | x+.15x=1456.20 | | x+.15x=1,456.20 |

Equations solver categories