(3/4)m+(1/8)m-6=15

Simple and best practice solution for (3/4)m+(1/8)m-6=15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)m+(1/8)m-6=15 equation:



(3/4)m+(1/8)m-6=15
We move all terms to the left:
(3/4)m+(1/8)m-6-(15)=0
Domain of the equation: 4)m!=0
m!=0/1
m!=0
m∈R
Domain of the equation: 8)m!=0
m!=0/1
m!=0
m∈R
We add all the numbers together, and all the variables
(+3/4)m+(+1/8)m-6-15=0
We add all the numbers together, and all the variables
(+3/4)m+(+1/8)m-21=0
We multiply parentheses
3m^2+m^2-21=0
We add all the numbers together, and all the variables
4m^2-21=0
a = 4; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·4·(-21)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{21}}{2*4}=\frac{0-4\sqrt{21}}{8} =-\frac{4\sqrt{21}}{8} =-\frac{\sqrt{21}}{2} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{21}}{2*4}=\frac{0+4\sqrt{21}}{8} =\frac{4\sqrt{21}}{8} =\frac{\sqrt{21}}{2} $

See similar equations:

| 31+(x+4)+(3x+9)=180 | | 2+0.12x=17.84 | | 8x+11x=435 | | 6b+10=4b-10 | | 6x-26=3x+7 | | -5x+20+7=-28 | | 10+c=-4c | | -4-7m=-10-9m | | 8=v*2 | | 4v=3v+2 | | 15-9x=11.49 | | 0=1+5x | | (2x-3)+115=90 | | b+6+6=2b+8 | | r=-r-6 | | 3(x-2)+4(4x-1)=0 | | 90-7.29x=68.13 | | 6x+74=56 | | 7c=5+8c | | -10+6k=5k | | 3x+4=6x+24=180 | | 6f+7=7f | | 9p=10p-5 | | F(x)=25x+9 | | 2(2b+4)=52 | | 5x+1=3x=9 | | 16x+4=4x-20 | | -7w+42=9w-38 | | 0=-1+2-6k | | -9x-12=-5x-40 | | 6*(6+6)=3*(x+3) | | 7-7x=5-9x |

Equations solver categories