(3/4)n+(1/2)n=90

Simple and best practice solution for (3/4)n+(1/2)n=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)n+(1/2)n=90 equation:



(3/4)n+(1/2)n=90
We move all terms to the left:
(3/4)n+(1/2)n-(90)=0
Domain of the equation: 4)n!=0
n!=0/1
n!=0
n∈R
Domain of the equation: 2)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+3/4)n+(+1/2)n-90=0
We multiply parentheses
3n^2+n^2-90=0
We add all the numbers together, and all the variables
4n^2-90=0
a = 4; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·4·(-90)
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{10}}{2*4}=\frac{0-12\sqrt{10}}{8} =-\frac{12\sqrt{10}}{8} =-\frac{3\sqrt{10}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{10}}{2*4}=\frac{0+12\sqrt{10}}{8} =\frac{12\sqrt{10}}{8} =\frac{3\sqrt{10}}{2} $

See similar equations:

| 2x+1/2x+3=105 | | C=d+5 | | -3x+5=-7x+1 | | -13t-11=-11-13t | | 23=7+3x+x | | 5+m=26 | | 10d+10=6d-10+9d | | 5z-13z=-16 | | 3x-5=-1x-25 | | 4-2(-x-3)=24 | | 7c=-7+6c | | 5x-1=1x-1 | | 11n-8n-12=-12+3n | | 6x–10+5x+1=8x+15 | | 14x+17=12x-19 | | y+1=y+4/2y+3=2y+5/3y+4=3y-2 | | 4z+6=3z+5+z+-1 | | 4(b–2)=2(5–b) | | -4z+8-6=-5z-5 | | (4y-42)=(2y) | | 5x+7=7x+139 | | 5n-4n=9 | | (5x-15)•8-25=855 | | 16-9j=-17j-20+4j | | -4x-3=-6x+3 | | 5s−10=4s | | –4z+8−6=–5z−5 | | 1-x=9-x | | -2-15p=-17p+8 | | X8+6x=28 | | 5(3+3y)=9 | | 17x=+25x |

Equations solver categories