(3/4)t-7=2

Simple and best practice solution for (3/4)t-7=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)t-7=2 equation:



(3/4)t-7=2
We move all terms to the left:
(3/4)t-7-(2)=0
Domain of the equation: 4)t!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
(+3/4)t-7-2=0
We add all the numbers together, and all the variables
(+3/4)t-9=0
We multiply parentheses
3t^2-9=0
a = 3; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·3·(-9)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{3}}{2*3}=\frac{0-6\sqrt{3}}{6} =-\frac{6\sqrt{3}}{6} =-\sqrt{3} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{3}}{2*3}=\frac{0+6\sqrt{3}}{6} =\frac{6\sqrt{3}}{6} =\sqrt{3} $

See similar equations:

| (-4x+54)+(11x+8)=90 | | (14x)+(3x+10)=360 | | -5(-4x+6)-x=5(x-5)-1 | | 3÷x-7+6÷2x-14=11 | | (2a-5)2-a=3 | | -5+7c=3c+9 | | 2h=3h-9 | | 5x2-12x-32=0 | | 10t=7t+3 | | 5a+7=3a+2 | | 26=w/5+10 | | -2(5-3x)=4(x+1) | | -3(x+5)=-9x+9 | | 3(b-6)=11 | | -15-34x=1715 | | 31=v/6+26 | | 2x+3=13÷20 | | X+2x=5500 | | v/3+12=16 | | 11/m+3=5/2m-1/m-4 | | 3.4=5p | | 4+v/70=5 | | -30=2-65x | | 37=5(v+5)-7v | | 15=y/4=11 | | 8x-19=5x+38 | | 39-30v=1701 | | 36+57-x=180 | | 2p17−2p=2p+5+2p | | 25-6x=9x+8 | | 17=-7x-2(-3x-4) | | 5c-3=2c+12 |

Equations solver categories