(3/4)x+(2/8)x=48/8

Simple and best practice solution for (3/4)x+(2/8)x=48/8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)x+(2/8)x=48/8 equation:



(3/4)x+(2/8)x=48/8
We move all terms to the left:
(3/4)x+(2/8)x-(48/8)=0
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 8)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/4)x+(+2/8)x-6=0
We multiply parentheses
3x^2+2x^2-6=0
We add all the numbers together, and all the variables
5x^2-6=0
a = 5; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·5·(-6)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*5}=\frac{0-2\sqrt{30}}{10} =-\frac{2\sqrt{30}}{10} =-\frac{\sqrt{30}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*5}=\frac{0+2\sqrt{30}}{10} =\frac{2\sqrt{30}}{10} =\frac{\sqrt{30}}{5} $

See similar equations:

| -50+8x=6(1+6x) | | 6x+10=5x-13 | | 3+9y=-9 | | (5x+2)=3(x+8) | | -30-5x=-5(x+8)+4 | | -8p+5=7p | | 360=4x+45 | | 2x+25+4-5x+4-5x=180 | | 3(w+4)=-6(4w-1)+9w | | 5+3n=22 | | 3x-15=1x-12 | | -1=n-1+6n | | 2x+25+4-5x=4-5x | | 6(4+5x)=3x-3 | | 4((3x-5)-x=-x+16 | | 2x+25+4-5x=180 | | -10=-9+n | | 3x+8+2x+2=18- | | -14=3x-2-3 | | −2p+4=2 | | 7x=15=2(3x+80)+x | | -6(1+x)=-6(6x+1) | | -7h=-10-6h | | 36+x=145+x+131 | | 2j-j+4j-5j+3j=18 | | 1/2(10x-2)+3x=23 | | 19=3+r | | b+35-35=-76-35 | | -2-3x-2=-16 | | 54+x+90=180 | | 80+0.60x=60+0.80x | | -9n=3-10n |

Equations solver categories