(3/4)x-(1/4)x+5=27

Simple and best practice solution for (3/4)x-(1/4)x+5=27 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)x-(1/4)x+5=27 equation:



(3/4)x-(1/4)x+5=27
We move all terms to the left:
(3/4)x-(1/4)x+5-(27)=0
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/4)x-(+1/4)x+5-27=0
We add all the numbers together, and all the variables
(+3/4)x-(+1/4)x-22=0
We multiply parentheses
3x^2-x^2-22=0
We add all the numbers together, and all the variables
2x^2-22=0
a = 2; b = 0; c = -22;
Δ = b2-4ac
Δ = 02-4·2·(-22)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{11}}{2*2}=\frac{0-4\sqrt{11}}{4} =-\frac{4\sqrt{11}}{4} =-\sqrt{11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{11}}{2*2}=\frac{0+4\sqrt{11}}{4} =\frac{4\sqrt{11}}{4} =\sqrt{11} $

See similar equations:

| 3(5x+7)=-46+7 | | .60*x=360 | | 2x.4=28 | | 8x-1728x^-3=0 | | 11(x+5)=11 | | (3x3)2=9x6 | | -50=10(x+1) | | 5x+35/x=15 | | 2b+6b=~24 | | g4=4.2g= | | f(-1)=12 | | 2/5d=25 | | 2x+6=13+Y | | 13.4(3.2m+7.4)=1.85=172.3 | | 3(z-4)=16z | | 2(x-4)+x=7+3(x+1) | | 5*h=35 | | 3d+6+4d=54 | | 5/216x5+180=0 | | 3x^+3x-1260=0 | | 2(a+3)+3(2a-1)=19a= | | 21x^2+21x-20=0 | | 5(6y-3y)+3(6-5y=48 | | 8=n-3n | | (v-5)^2=2v^2-6v+4 | | X2+y2=1989 | | |5x-4|=21 | | 5−m6=19 | | 10^x=3^23 | | 17=a9−2 | | 102(t+1)=1 | | 8(3-z=4z |

Equations solver categories