(3/4)x-2+90+(2/5)x=180

Simple and best practice solution for (3/4)x-2+90+(2/5)x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)x-2+90+(2/5)x=180 equation:



(3/4)x-2+90+(2/5)x=180
We move all terms to the left:
(3/4)x-2+90+(2/5)x-(180)=0
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/4)x+(+2/5)x-2+90-180=0
We add all the numbers together, and all the variables
(+3/4)x+(+2/5)x-92=0
We multiply parentheses
3x^2+2x^2-92=0
We add all the numbers together, and all the variables
5x^2-92=0
a = 5; b = 0; c = -92;
Δ = b2-4ac
Δ = 02-4·5·(-92)
Δ = 1840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1840}=\sqrt{16*115}=\sqrt{16}*\sqrt{115}=4\sqrt{115}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{115}}{2*5}=\frac{0-4\sqrt{115}}{10} =-\frac{4\sqrt{115}}{10} =-\frac{2\sqrt{115}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{115}}{2*5}=\frac{0+4\sqrt{115}}{10} =\frac{4\sqrt{115}}{10} =\frac{2\sqrt{115}}{5} $

See similar equations:

| (x)(2x-1)(3x+9)=0 | | 3(3-c)/2=-2(2c+5)/3 | | 4+2(z-2)=-7z+2 | | 10(2y+2)-y=2(8y-) | | 6=1-2v | | 6x-8-6x=-3 | | 5(1-5n+3n)=-15 | | 5v=v+64 | | 6=1-3v | | -57=-3(x+7) | | -3=x/​6-2 | | P=T+.05x | | 3/4=1/2+d/7 | | 5-2(x-2)=-2x+9 | | 3x-(2x+1)=-6 | | (10y-)-3=4y+63 | | 5(2x-1)-5x=0 | | 6=1-5v | | -10+9n-1-8n=7n+7 | | 7x-4x(x+1)=8 | | v+60=4v | | -8x/2+9=3 | | -1+7m+5-8=3m+5m | | -3=​x/​6-2 | | 7=-11+3(d+5) | | −7+4p=−8p+11. | | 28=z÷3 | | n/2+(-3)=4 | | -6n+7=59 | | -4(-m+2)+2m=1/2(10-12m)-3 | | -6x/2+9=3 | | 524x524=274,576 |

Equations solver categories