(3/47x)+37=5x+62

Simple and best practice solution for (3/47x)+37=5x+62 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/47x)+37=5x+62 equation:



(3/47x)+37=5x+62
We move all terms to the left:
(3/47x)+37-(5x+62)=0
Domain of the equation: 47x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/47x)-(5x+62)+37=0
We get rid of parentheses
3/47x-5x-62+37=0
We multiply all the terms by the denominator
-5x*47x-62*47x+37*47x+3=0
Wy multiply elements
-235x^2-2914x+1739x+3=0
We add all the numbers together, and all the variables
-235x^2-1175x+3=0
a = -235; b = -1175; c = +3;
Δ = b2-4ac
Δ = -11752-4·(-235)·3
Δ = 1383445
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1383445}=\sqrt{841*1645}=\sqrt{841}*\sqrt{1645}=29\sqrt{1645}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1175)-29\sqrt{1645}}{2*-235}=\frac{1175-29\sqrt{1645}}{-470} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1175)+29\sqrt{1645}}{2*-235}=\frac{1175+29\sqrt{1645}}{-470} $

See similar equations:

| 6.1f+1.07=9 | | -7(6x-2)=56 | | 3x+x-9=47 | | 42=-3(1-x)+5(x+1) | | y^2-24y-80=0 | | x/2+4x=x | | -1/6r-3=2 | | 1/3x+4=-19 | | -15-b=-44 | | 13-3+n=19 | | −4x=88 | | x/5+4x+3(x-5)=x | | 40,000x+1,000=60,000 | | 3x/47+37=5x+62 | | 3x=−33 | | 15x-15=13+3 | | 1/2(12-2x)-4=14-10x | | m+25=0 | | 5x-9=3x-45 | | -3=8x+16 | | 4(w−16)=8 | | 16t2=400 | | 6x-(3x-11)=36 | | −3x=45 | | 8.5c=6.2 | | 9x-6=9x−6=4x+19 | | 24-(6y+5y)=6 | | 18+32=x | | 2x+4=6x+40 | | 2/5b=17/8 | | 5-2x=3-2x=-2 | | 0.5x+10+1.5x=x+1 |

Equations solver categories