(3/5)(p+3)=8

Simple and best practice solution for (3/5)(p+3)=8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/5)(p+3)=8 equation:



(3/5)(p+3)=8
We move all terms to the left:
(3/5)(p+3)-(8)=0
Domain of the equation: 5)(p+3)!=0
p∈R
We add all the numbers together, and all the variables
(+3/5)(p+3)-8=0
We multiply parentheses ..
(+3p^2+3/5*3)-8=0
We multiply all the terms by the denominator
(+3p^2+3-8*5*3)=0
We get rid of parentheses
3p^2+3-8*5*3=0
We add all the numbers together, and all the variables
3p^2-117=0
a = 3; b = 0; c = -117;
Δ = b2-4ac
Δ = 02-4·3·(-117)
Δ = 1404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1404}=\sqrt{36*39}=\sqrt{36}*\sqrt{39}=6\sqrt{39}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{39}}{2*3}=\frac{0-6\sqrt{39}}{6} =-\frac{6\sqrt{39}}{6} =-\sqrt{39} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{39}}{2*3}=\frac{0+6\sqrt{39}}{6} =\frac{6\sqrt{39}}{6} =\sqrt{39} $

See similar equations:

| -23=-8x-7 | | (3x-1)^6=64 | | 29-4x=20 | | 2.5x-4.8=2.7 | | 25+8.50x=59.00 | | (x+2)(x+3)=(x+5)(x+1) | | 10+1/4x=15 | | -9(x-8)=6x+42 | | 2x-8=-2(x+2) | | 99+-y=9y+-27 | | x5+64x2=0 | | 2y=5y-5 | | 3x^2-12=9^2x | | (x)=(2-x)(x-9) | | 8x+9=4x+23= | | 2^x=2.56 | | 7x+8=47/5 | | 14=z/2+10 | | z/10+2=9z= | | 5x+6=-14x= | | x+2=x4+5 | | 8x-5x+155=8x+70 | | (x-1)(x-2)(x+3)=96 | | 35=(5x+9) | | (x+3)(x-2)(x-1)=96 | | 3(f+1)=3(2f+1) | | X+{4(x+1)}+3=97 | | X+(2x-4)=23 | | 13.47h-0.06=14.23h-0.15 | | 5p-4=3p+1/4 | | 12x−9=56 | | 5−(3+x)=10−3x |

Equations solver categories