(3/5)+(1/5)x=8

Simple and best practice solution for (3/5)+(1/5)x=8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/5)+(1/5)x=8 equation:



(3/5)+(1/5)x=8
We move all terms to the left:
(3/5)+(1/5)x-(8)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (1/5)x-8+(3/5)=0
We add all the numbers together, and all the variables
(+1/5)x-8+(+3/5)=0
We multiply parentheses
x^2-8+(+3/5)=0
We get rid of parentheses
x^2-8+3/5=0
We multiply all the terms by the denominator
x^2*5+3-8*5=0
We add all the numbers together, and all the variables
x^2*5-37=0
Wy multiply elements
5x^2-37=0
a = 5; b = 0; c = -37;
Δ = b2-4ac
Δ = 02-4·5·(-37)
Δ = 740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{740}=\sqrt{4*185}=\sqrt{4}*\sqrt{185}=2\sqrt{185}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{185}}{2*5}=\frac{0-2\sqrt{185}}{10} =-\frac{2\sqrt{185}}{10} =-\frac{\sqrt{185}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{185}}{2*5}=\frac{0+2\sqrt{185}}{10} =\frac{2\sqrt{185}}{10} =\frac{\sqrt{185}}{5} $

See similar equations:

| -96=-6(1+3r) | | 2h+7=3h+53 | | 22+x+38=90 | | 8x^2+512=-128x | | (.18x+56)+(.07x+46)=180 | | 11976=2320(1.2)x | | 2−9b=7b+50 | | −34=4m+2 | | 2(8x+(900/x))=0 | | -1x+3=12 | | 18/3x=4.5 | | (5x-70)=150 | | 3w^2=147 | | -0.5x-31/4=11/3 | | 2x=13-3 | | 1/4p=4.5 | | 5r+34=2r+76 | | 7/8=5/6z | | 3r+13=-5 | | 9x-22+5x-7+61+34=180 | | 30-10=x-5 | | 6r-48=4r+38 | | 4y-2(3/2y-5)=0 | | 105=3x+x-5 | | 6r-2=4r+48 | | 10x+16+54=180 | | 100(x+12)=x | | 3^2+x^2=5.8^2 | | 3^2x^2=5.8^2 | | 1-8/6x=5/2 | | v2=3.2 | | 5x+3-8x=7x+5 |

Equations solver categories