(3/5)q=15

Simple and best practice solution for (3/5)q=15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/5)q=15 equation:



(3/5)q=15
We move all terms to the left:
(3/5)q-(15)=0
Domain of the equation: 5)q!=0
q!=0/1
q!=0
q∈R
We add all the numbers together, and all the variables
(+3/5)q-15=0
We multiply parentheses
3q^2-15=0
a = 3; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·3·(-15)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*3}=\frac{0-6\sqrt{5}}{6} =-\frac{6\sqrt{5}}{6} =-\sqrt{5} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*3}=\frac{0+6\sqrt{5}}{6} =\frac{6\sqrt{5}}{6} =\sqrt{5} $

See similar equations:

| 2x2−8x−3=0 | | 3x2+17x-28=0 | | 2/3n+6=10 | | 9=-z/2 | | -5(y-3)=-2y+6 | | 3(7+w)=2(w-1) | | 7x1=2x+5 | | .5(n–4)–3=3–(2n+3) | | 5/6y+1=-1/3y+8/9 | | 0=(10-x/4)^2 | | 6u^2-53u-5=0 | | k÷-18=2 | | 5/6y+1=1/3y+8/9 | | k÷-`8=2 | | 8z-1=11z=2 | | -3(k+1)-(7+4k)=-8k | | 17b+4.75/5(b-2)=9.6 | | 0=-16t^2+1048t | | 3x2+23x=0 | | 7x-1=+5 | | -x2+4=200 | | 5r+20-r-3=5 | | 3/4x+16=1/8x+2 | | 18/g-11=9(-2+1/g)+8 | | 7(c+1)=6+6c | | (-1/6d=-4 | | 2×-5=4x-1 | | x+(3x-5)=75 | | 7y-3=5-3y | | 5-x/3=30 | | x+x+(x/6)+(x/6)=1 | | x+28=-58 |

Equations solver categories