(3/5)z-5=10

Simple and best practice solution for (3/5)z-5=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/5)z-5=10 equation:



(3/5)z-5=10
We move all terms to the left:
(3/5)z-5-(10)=0
Domain of the equation: 5)z!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
(+3/5)z-5-10=0
We add all the numbers together, and all the variables
(+3/5)z-15=0
We multiply parentheses
3z^2-15=0
a = 3; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·3·(-15)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*3}=\frac{0-6\sqrt{5}}{6} =-\frac{6\sqrt{5}}{6} =-\sqrt{5} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*3}=\frac{0+6\sqrt{5}}{6} =\frac{6\sqrt{5}}{6} =\sqrt{5} $

See similar equations:

| 98=41-3v | | 15-30x=5 | | 7=j/3+6 | | 5n+3=73 | | B=95+(10+9)w | | t=52-53 | | -4(t-8)-(t+5)=6 | | -5p=90 | | 1(x+13)/3=2x+1 | | 12.5-x=43 | | 3(5k+7)+2(3k-5)=5(2k+11) | | 34=m-37 | | 6+7(x-2)=6-3(x-4) | | b+11=96 | | -6=4p-11-3p | | u-5=39 | | g-85=-71 | | 9x+12x=-8x+7x | | 2v=70 | | 5/2(3x+4)=-1/3(-2x+7) | | -3(x-1)/5=x-7 | | u-23=73 | | 3(x-1)/5=x-7 | | 3x2-200=100 | | 2k-3(2k-30)=45* | | r=-8+34 | | 68=(1/5)(20x+50)+2* | | 35=d+7 | | 5=10-v* | | (3x+6)/4=2x-1 | | 2m-3=13*1 | | 3/2b=90 |

Equations solver categories