(3/5x)+(7/2x)=1

Simple and best practice solution for (3/5x)+(7/2x)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/5x)+(7/2x)=1 equation:



(3/5x)+(7/2x)=1
We move all terms to the left:
(3/5x)+(7/2x)-(1)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/5x)+(+7/2x)-1=0
We get rid of parentheses
3/5x+7/2x-1=0
We calculate fractions
6x/10x^2+35x/10x^2-1=0
We multiply all the terms by the denominator
6x+35x-1*10x^2=0
We add all the numbers together, and all the variables
41x-1*10x^2=0
Wy multiply elements
-10x^2+41x=0
a = -10; b = 41; c = 0;
Δ = b2-4ac
Δ = 412-4·(-10)·0
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1681}=41$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-41}{2*-10}=\frac{-82}{-20} =4+1/10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+41}{2*-10}=\frac{0}{-20} =0 $

See similar equations:

| 12=k/2/3 | | 56=4s | | -12+m=-2m-16-2 | | 100=-16x^2+64 | | 4/5=k-3/7 | | 2=-16x^2+64 | | -12+m=-2(m+8)-3 | | 16=-16x^2+64 | | -12+m=-2(m+8)-2 | | 15=2(q+4) | | 2(2x+3)-7x=23-5(×+3x) | | 3(x+-5)^2=15 | | -4b+3b=b+14 | | -217=-7b-7(3-8b) | | 4x+2=1/8 | | 3x^2+18x+34=0 | | 3(x+-5)^2+2=17 | | 201.9y=-1615.2 | | 3(x-2=30+x-2-x+2 | | -112.4q=-1461.2 | | 0.4x-0.2+3.96=0.598 | | (-4n^2+2n)-(n^2-5)=0 | | 3x2-3×+2=0 | | 64=36^x | | 100=16t | | x/62+89=81 | | 2m^2-51=22m+1 | | 3x^2+7=270 | | X-0.20x=656 | | 7r=r+1/5(r+32)+r+32 | | (x+5)/(4x-10)=(30)/(75) | | 13x-4=4x-2+2x+3 |

Equations solver categories