(3/5x)-(8/15x)=3

Simple and best practice solution for (3/5x)-(8/15x)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/5x)-(8/15x)=3 equation:



(3/5x)-(8/15x)=3
We move all terms to the left:
(3/5x)-(8/15x)-(3)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 15x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/5x)-(+8/15x)-3=0
We get rid of parentheses
3/5x-8/15x-3=0
We calculate fractions
45x/75x^2+(-40x)/75x^2-3=0
We multiply all the terms by the denominator
45x+(-40x)-3*75x^2=0
Wy multiply elements
-225x^2+45x+(-40x)=0
We get rid of parentheses
-225x^2+45x-40x=0
We add all the numbers together, and all the variables
-225x^2+5x=0
a = -225; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-225)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-225}=\frac{-10}{-450} =1/45 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-225}=\frac{0}{-450} =0 $

See similar equations:

| 5(10x+6)=18(10x+17) | | -2(x+1)=7 | | x=0.1x | | 12=3/5a | | 12=3/5×a | | 2+14z=8-9z | | -121v^2+81=0 | | -234+n=-460 | | 3x=-7+10x | | 20x+x+149+x+29=180 | | 14w+8w=32+8w | | 3x-18-5x=18x-0 | | 2.5^2=-4a(-12) | | -8u+6(u+4)=8 | | -4m+4=-5m–6 | | 2.5x+1.8=5.3 | | 2÷3x-3=9 | | 4a-4=8+9a | | 3×16=-9+k | | -x-5=-59+5x | | 5x-3/2=3 | | 3y-(15)+(2)=8 | | x^-8x+2=0 | | 3x+10+8x+60=180 | | 3x-8÷4=7 | | 4c+2=-6c-3 | | 150m−125m+43,875=45,225−200m | | x-3/8+2x-1/6=5x+3/3 | | -4x+1=4x-31 | | 5-(8v+5)=-4(1+3v | | p-50+p=p+37 | | 8(p^2+10)-728=0 |

Equations solver categories