(3/5x)-20=(20*2)+x

Simple and best practice solution for (3/5x)-20=(20*2)+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/5x)-20=(20*2)+x equation:



(3/5x)-20=(20*2)+x
We move all terms to the left:
(3/5x)-20-((20*2)+x)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/5x)-(40+x)-20=0
We get rid of parentheses
3/5x-x-40-20=0
We multiply all the terms by the denominator
-x*5x-40*5x-20*5x+3=0
Wy multiply elements
-5x^2-200x-100x+3=0
We add all the numbers together, and all the variables
-5x^2-300x+3=0
a = -5; b = -300; c = +3;
Δ = b2-4ac
Δ = -3002-4·(-5)·3
Δ = 90060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{90060}=\sqrt{4*22515}=\sqrt{4}*\sqrt{22515}=2\sqrt{22515}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-300)-2\sqrt{22515}}{2*-5}=\frac{300-2\sqrt{22515}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-300)+2\sqrt{22515}}{2*-5}=\frac{300+2\sqrt{22515}}{-10} $

See similar equations:

| 8/(2x)=1 | | X+x-24=38 | | 10.334y=7.334 | | 20-x=4x-(-x+10) | | x-8/x-4=3/4 | | -0n-8=-2 | | (6x-10)-(7x+8)=180 | | -40+-20n=8 | | -3*y=5 | | (D^2-D+2)y=0 | | x/3-x+1/2=1 | | -40+20n=8 | | ⅗x-20=(20*2)+x | | 2-2x/3=2+x | | (9x-1)-(94)1/2=2x | | 6x-7=3x-25 | | (5x-6)-(4x+8)/2=3 | | -7x-11=-5x-19 | | 1/2(5x-6)-(4x+8)=3 | | 2(6x+7)=4(x+3) | | 3X2+-48x=0 | | 3-3x=2/3x+6 | | 2-2x/3=2x | | (2-2x)/3=2+x | | (3+x)/2x-3=-1/2 | | 42-x=60-2x | | 5(x-5)=5x | | a2=15a=26 | | -5x^2+63x-198,45=0 | | 5x-6-4x+8=3 | | x^2-12,6x+39,69=0 | | 7x-4/5=5x-2/2 |

Equations solver categories