(3/7)(x+3)+5=3x+2

Simple and best practice solution for (3/7)(x+3)+5=3x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/7)(x+3)+5=3x+2 equation:



(3/7)(x+3)+5=3x+2
We move all terms to the left:
(3/7)(x+3)+5-(3x+2)=0
Domain of the equation: 7)(x+3)!=0
x∈R
We add all the numbers together, and all the variables
(+3/7)(x+3)-(3x+2)+5=0
We get rid of parentheses
(+3/7)(x+3)-3x-2+5=0
We multiply parentheses ..
(+3x^2+3/7*3)-3x-2+5=0
We multiply all the terms by the denominator
(+3x^2+3-3x*7*3)-2*7*3)+5*7*3)=0
We add all the numbers together, and all the variables
(+3x^2+3-3x*7*3)=0
We get rid of parentheses
3x^2-3x*7*3+3=0
Wy multiply elements
3x^2-63x*3+3=0
Wy multiply elements
3x^2-189x+3=0
a = 3; b = -189; c = +3;
Δ = b2-4ac
Δ = -1892-4·3·3
Δ = 35685
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{35685}=\sqrt{9*3965}=\sqrt{9}*\sqrt{3965}=3\sqrt{3965}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-189)-3\sqrt{3965}}{2*3}=\frac{189-3\sqrt{3965}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-189)+3\sqrt{3965}}{2*3}=\frac{189+3\sqrt{3965}}{6} $

See similar equations:

| x=-46-8x22 | | ?x7+4=73 | | xx7+4=73 | | –7=k+49/–4 | | 14x+7=20−112x | | -4q+-6=14 | | x2−18x−19=0 | | -64=7z-8 | | –3.7n=33.3 | | -6(x+9=3(x+9) | | 4+xx7=73 | | 28y+6=20 | | (-4x+8)+3(4x+8)=0 | | 2+3(2x+6)^2=14 | | 7+5k=22 | | 8(g+46)=0 | | 20=2+3q | | -2+-h=-4 | | 3=c+15 | | -8(k-89)=-8 | | 5=b/5-4 | | c-92/5=1 | | x-65=180 | | 21-2w=11 | | 15n-62=43 | | 2(x=3)=-4 | | X^4-x^2-0.176=0 | | s-42/8=5 | | v/8+83=88 | | 12−3b=3 | | x+20=4x-15 | | 5(x^2-2)=x(1-x)+10x) |

Equations solver categories