If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3/7)(x+49)+8=35
We move all terms to the left:
(3/7)(x+49)+8-(35)=0
Domain of the equation: 7)(x+49)!=0We add all the numbers together, and all the variables
x∈R
(+3/7)(x+49)+8-35=0
We add all the numbers together, and all the variables
(+3/7)(x+49)-27=0
We multiply parentheses ..
(+3x^2+3/7*49)-27=0
We multiply all the terms by the denominator
(+3x^2+3-27*7*49)=0
We get rid of parentheses
3x^2+3-27*7*49=0
We add all the numbers together, and all the variables
3x^2-9258=0
a = 3; b = 0; c = -9258;
Δ = b2-4ac
Δ = 02-4·3·(-9258)
Δ = 111096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{111096}=\sqrt{36*3086}=\sqrt{36}*\sqrt{3086}=6\sqrt{3086}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{3086}}{2*3}=\frac{0-6\sqrt{3086}}{6} =-\frac{6\sqrt{3086}}{6} =-\sqrt{3086} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{3086}}{2*3}=\frac{0+6\sqrt{3086}}{6} =\frac{6\sqrt{3086}}{6} =\sqrt{3086} $
| 2(5x-2)^2+5(5x-2)-9=0 | | 3(y–2)+15=–3(y–3)+6y | | 3x-15+x=18+x | | 9m=9+6m | | 7(-x-3)+2=58 | | 1/4z-2=8 | | 5m-18=2(m+5) | | 98=11x-12 | | 2/3+3x/5=31/5 | | -3b=-3b+10 | | 3+3x=129 | | b-(-7)=13 | | (6x+1)+(13x-11)=180 | | 2v-5v+8=-16 | | -8=b-15 | | 9w-34=10(10w-3)-4 | | 7(x+3)+2=58 | | -54=-9m+36 | | 4(3x-15)=-24x | | 15.1+x/6=-4.1 | | 26x=25+22+3X | | 5r+12=r-12 | | 5(x+3)-2(x+4)=28 | | -3+x=4.2 | | m+7m=40-2m | | −5(3x−1)=2(x−68)−29 | | 6w+21=81 | | 6x+27+3+90=180 | | 2v-5v+8=16 | | 0=9j-9j | | -9w-34=10 | | 20=5-3n |