If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3/7)x+(3/8)=3
We move all terms to the left:
(3/7)x+(3/8)-(3)=0
Domain of the equation: 7)x!=0determiningTheFunctionDomain (3/7)x-3+(3/8)=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/7)x-3+(+3/8)=0
We multiply parentheses
3x^2-3+(+3/8)=0
We get rid of parentheses
3x^2-3+3/8=0
We multiply all the terms by the denominator
3x^2*8+3-3*8=0
We add all the numbers together, and all the variables
3x^2*8-21=0
Wy multiply elements
24x^2-21=0
a = 24; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·24·(-21)
Δ = 2016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2016}=\sqrt{144*14}=\sqrt{144}*\sqrt{14}=12\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{14}}{2*24}=\frac{0-12\sqrt{14}}{48} =-\frac{12\sqrt{14}}{48} =-\frac{\sqrt{14}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{14}}{2*24}=\frac{0+12\sqrt{14}}{48} =\frac{12\sqrt{14}}{48} =\frac{\sqrt{14}}{4} $
| 1.5x=(x+60) | | 2/3x+4=3/2(x-4) | | 33=3v-15 | | -4x=6=-42 | | 3/7x+3/8=3 | | x+x+x+3=x+x+7 | | 12+(6x+4)=90 | | 4y-8=3-(y+1( | | n-2=2n+15 | | 4x^2+4x-92=0 | | t+1/2=1/3 | | 4x-60=x+60=1.5x | | 5-6(x-1)=11+4x | | 21x+4-6x=9 | | 2x+1+x+5=x=x+7+x | | 3a+0.6=2a+4.6 | | u=369u-6 | | A=5.6x39.2 | | 2x+1+x+7=x+7+x | | x+60=1.5x | | 90+2x-1=180 | | 3x+228=x+64 | | 1.5x=4x-60=x+60 | | 21x+15=17x+35 | | 5^6x-3=625 | | 1.5x=(4x-60)=x+60 | | 15.47+0.11x=15.97-0.09x | | (4x+3)^2=8x(4x+1) | | 6x^2-4x-28=-10+5x | | 3x4=7x+3 | | -6(-6+8n)=180 | | 11x+23=7x-23 |