(3/7v)-(2/5v)=1

Simple and best practice solution for (3/7v)-(2/5v)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/7v)-(2/5v)=1 equation:



(3/7v)-(2/5v)=1
We move all terms to the left:
(3/7v)-(2/5v)-(1)=0
Domain of the equation: 7v)!=0
v!=0/1
v!=0
v∈R
Domain of the equation: 5v)!=0
v!=0/1
v!=0
v∈R
We add all the numbers together, and all the variables
(+3/7v)-(+2/5v)-1=0
We get rid of parentheses
3/7v-2/5v-1=0
We calculate fractions
15v/35v^2+(-14v)/35v^2-1=0
We multiply all the terms by the denominator
15v+(-14v)-1*35v^2=0
Wy multiply elements
-35v^2+15v+(-14v)=0
We get rid of parentheses
-35v^2+15v-14v=0
We add all the numbers together, and all the variables
-35v^2+v=0
a = -35; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-35)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-35}=\frac{-2}{-70} =1/35 $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-35}=\frac{0}{-70} =0 $

See similar equations:

| 14=5+g | | (2y+13)(5y+8)=0 | | -9x+2(-3+9x)=-3 | | 15.58=x-0.18x | | 10n•5=25 | | 2/3x-1/2=x/6 | | y-12=4/9(0+7) | | -42=-6/7u | | 2x^2+8x-5=2x(x+15/2) | | 14h-5h+2=20 | | -26+4b=-2(7+4b) | | 3h2+37h+12=0 | | -9x2(-3+9x)=-3 | | 5m/7=37 | | 25p-12p-60=250 | | −9x+11=74 | | 5x-45=8x+6 | | x^+11x-180=0 | | 5x+45=8x+6 | | .99x+x=1000 | | x^-11x+180=0 | | -20a+-2a+6a+15a=-12 | | 4/5x+3=-9 | | 8t-6t+2t-3t=8 | | 97-3d=79 | | 3d+2=12-2d | | 5x-3(x-2)=5+4x+7 | | 4(10−3x)−3(16−5x)=1 | | 5(3+t)=60 | | 2x-1=3x-5(16x+1/28x) | | -9c+20c+8c+3c-17c=-10 | | 7x+1.3-4.1x=0.4-3.2 |

Equations solver categories