(3/8)b-(1/4)b=3

Simple and best practice solution for (3/8)b-(1/4)b=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/8)b-(1/4)b=3 equation:



(3/8)b-(1/4)b=3
We move all terms to the left:
(3/8)b-(1/4)b-(3)=0
Domain of the equation: 8)b!=0
b!=0/1
b!=0
b∈R
Domain of the equation: 4)b!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
(+3/8)b-(+1/4)b-3=0
We multiply parentheses
3b^2-b^2-3=0
We add all the numbers together, and all the variables
2b^2-3=0
a = 2; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·2·(-3)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*2}=\frac{0-2\sqrt{6}}{4} =-\frac{2\sqrt{6}}{4} =-\frac{\sqrt{6}}{2} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*2}=\frac{0+2\sqrt{6}}{4} =\frac{2\sqrt{6}}{4} =\frac{\sqrt{6}}{2} $

See similar equations:

| 5(3c-2)-7c=40-2cc= | | 6=9y-7y | | 2a+5/9=3 | | 29=2p+3 | | x*x=288 | | 3p+5-7p=21 | | -15n+15=18-29n | | 2x-(-4x)=48 | | 45+3y+6y=180 | | 7.49=0.94x | | 48+3y-18=12y-12-3y | | 16x-3=25 | | 3y+50=7y-10 | | (x+3)(x-8)(3x-4)=0 | | 72/x=3.6/0/015 | | 3x+2(x+8)=24 | | 5z+13=-7 | | 21x=2121212121212121 | | 7x+8÷2=9x+1 | | |x|+6=14 | | 5x-145=745 | | 145-5x=745 | | x+4-6x=4-5x | | w/8.75=7 | | 745-145=5x | | 5x=745 | | 8v+15=11v | | 8-5x=1+3x | | 4(8x-7)=36 | | 11x-4=2x+7 | | 16y+32=104 | | 4p=-25 |

Equations solver categories