(3/8)f+(1/2)=6((1/16)f-3)

Simple and best practice solution for (3/8)f+(1/2)=6((1/16)f-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/8)f+(1/2)=6((1/16)f-3) equation:



(3/8)f+(1/2)=6((1/16)f-3)
We move all terms to the left:
(3/8)f+(1/2)-(6((1/16)f-3))=0
Domain of the equation: 8)f!=0
f!=0/1
f!=0
f∈R
Domain of the equation: 16)f-3))!=0
f!=0/1
f!=0
f∈R
We add all the numbers together, and all the variables
(+3/8)f-(6((+1/16)f-3))+(+1/2)=0
We multiply parentheses
3f^2-(6((+1/16)f-3))+(+1/2)=0
We get rid of parentheses
3f^2-(6((+1/16)f-3))+1/2=0
We calculate fractions
3f^2+()/16f-3))*2)+16f/16f-3))*2)=0
We calculate fractions
3f^2+(()*16f)/256f^2+(-3))*2)+16f*16f)/256f^2=0
We multiply all the terms by the denominator
3f^2*256f^2+(()*16f)+(-3))*2)+16f*16f)=0
We calculate terms in parentheses: +(()*16f), so:
()*16f
Wy multiply elements
768f^4+(()*16f)+(-3))*2)+16f*16f)=0
We get rid of parentheses
768f^4+(()*16f)-3))*2)+16f*16f=0
We calculate terms in parentheses: +(()*16f), so:
()*16f
We do not support efpression: f^4

See similar equations:

| 3w-6=2w-3 | | (3/8)f+(1/2)=6(1/16f-3) | | -x-4=-2x+3 | | 5w-6=-1-1 | | 13x+9=12x+5 | | -2w-4=-3w-2 | | –6−3v−5=v+9 | | 9/x+4=12 | | a/5=a—3/2 | | 22+3x+6=40 | | 5/3-3m/2=31/6 | | 4/5y=-48 | | -6x/10=28 | | 77+2x=111 | | -12-2b=4-2b | | 13-x=41 | | -6x+1=-2+7x | | 45=-5x/2 | | 12(w+11)=180 | | 2y−4=–4+2y | | 17.4x^2+36.1x+83.3=0 | | 2/3k+7=49 | | 2x–1=0.5x+5 | | |m+6|+1=33 | | (5x-2)+(5x-2)+x=150 | | 174x^2+36x+83.3=0 | | 7x/15=x/5+28 | | 3|k-2|=2|k+2| | | -10x+4=11-3x | | L(d)=41+27 | | 4(x+3)−4=8x+10-4x | | 14x-3x-6x=15 |

Equations solver categories