(3/8)n+1=25

Simple and best practice solution for (3/8)n+1=25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/8)n+1=25 equation:



(3/8)n+1=25
We move all terms to the left:
(3/8)n+1-(25)=0
Domain of the equation: 8)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+3/8)n+1-25=0
We add all the numbers together, and all the variables
(+3/8)n-24=0
We multiply parentheses
3n^2-24=0
a = 3; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·3·(-24)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*3}=\frac{0-12\sqrt{2}}{6} =-\frac{12\sqrt{2}}{6} =-2\sqrt{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*3}=\frac{0+12\sqrt{2}}{6} =\frac{12\sqrt{2}}{6} =2\sqrt{2} $

See similar equations:

| -5r+-13r+-6r+-r+-13r=-18 | | X=3.2+6x | | -91=-7(6-p | | 0.11x+0.95(20000-x)=2095 | | x+2/2-2x-3/4=3x+1/3 | | x=(2x+3)(4x+7) | | 4+(x/6)=5 | | 6v-5(5+8v)=145 | | 5y–3+9y=67 | | -4(5x-2)+2x+4=50 | | 14+6x=-64 | | u-142=196 | | -49p+9=-5 | | 2197=13(13x-2)+2x | | 69.3=-2.2(0.4+5.5r) | | n-n+6n=18 | | 3x-8(2x+3=-6(2x5) | | 1/12(24x+48)=2(x+2) | | 0.12(y-6)+0.02y=0.06y-0.6 | | -90=-8x | | -5v-6+4=3 | | w+51=-29 | | 90=x+15+2x | | 13c+18c+-19c-c+-13c=8 | | -13=-3x-2(x+2) | | 4(x+7)+5x=2(2x-3) | | 15=h-8 | | 3=1+2v-6 | | 18x-17=1x+21 | | -26+13x+2=2-13x | | Y=8x²+9 | | 1/3(9x-15)+2/5(10x+15)=-20 |

Equations solver categories