(3/8)q+12=36

Simple and best practice solution for (3/8)q+12=36 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/8)q+12=36 equation:



(3/8)q+12=36
We move all terms to the left:
(3/8)q+12-(36)=0
Domain of the equation: 8)q!=0
q!=0/1
q!=0
q∈R
We add all the numbers together, and all the variables
(+3/8)q+12-36=0
We add all the numbers together, and all the variables
(+3/8)q-24=0
We multiply parentheses
3q^2-24=0
a = 3; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·3·(-24)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*3}=\frac{0-12\sqrt{2}}{6} =-\frac{12\sqrt{2}}{6} =-2\sqrt{2} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*3}=\frac{0+12\sqrt{2}}{6} =\frac{12\sqrt{2}}{6} =2\sqrt{2} $

See similar equations:

| (5a)^3a=1 | | 30=10x^2 | | 2+3(z-3)=z+3z+6z. | | 7x+3=x-3x-4x | | (-2/5)c-8=32 | | x+4x=1754x=175 | | 15+p=3 | | x+4x+1754x=175 | | -10+9x+7x+10=180 | | -10+10x+8x+12=180 | | 2(3x+4)-3(4x-5)=17 | | 11x+8+12x+1=180 | | 13t/14-t/7=1 | | 4x*4-40=27x*2 | | 37x+13=6(6x+3) | | (3x-15)+(2x+24)+(2x)+(2x)=360 | | 5x-2x+6=x-7+13 | | 5x-2x+6=x-7 | | 5x-2x=6=x-7+13 | | 4(2x-5)=5x4 | | 5x-6-7x=x | | 2(X+1)=6x+9 | | 3a+43=49 | | 5+7/2y=4 | | 2m3+m3=0 | | 42-4f=19 | | 2*10=5*x | | 6x+16-5x=11 | | 5(4x-3(=-25 | | x4(x−8)=−36 | | 25x-30=67.5 | | 3y-8y=5 |

Equations solver categories