(3/x)+(5/(2x))=12

Simple and best practice solution for (3/x)+(5/(2x))=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/x)+(5/(2x))=12 equation:



(3/x)+(5/(2x))=12
We move all terms to the left:
(3/x)+(5/(2x))-(12)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/x)+(+5/2x)-12=0
We get rid of parentheses
3/x+5/2x-12=0
We calculate fractions
6x/2x^2+5x/2x^2-12=0
We multiply all the terms by the denominator
6x+5x-12*2x^2=0
We add all the numbers together, and all the variables
11x-12*2x^2=0
Wy multiply elements
-24x^2+11x=0
a = -24; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·(-24)·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*-24}=\frac{-22}{-48} =11/24 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*-24}=\frac{0}{-48} =0 $

See similar equations:

| 25+.22m=19.94 | | -2(k+6)-(-3k+3)=-2 | | -3(2u+8)-5u=7(u-2)-7 | | -7v+3(v+2)=-6 | | (-9)^2=2^3t+(3×6+1)t | | 30+.22m=26.04 | | (x2)+32=180 | | 35=2a=7a | | (Xx2)+32=180 | | 16.95+.77m=134.76 | | -3(6y-2)+5y=2(y+6) | | 3x-2-8x=8 | | 3(x-1)-3=-3(-5x+6)-4x | | -9(w-3)=-2w-22 | | 9u+22=2(u-3) | | 2(u+8)-6u=4 | | 4w^2+13w-12=0 | | -14=4(w-2)-7w | | 20v−5−12v=10v+8 | | -8v+6(v+2)=28 | | x+(x+3)+(x/2)=78 | | C=10(r+.1) | | C=10(x+.1) | | 16-4(5-2x)=4(x-1) | | X/5+4/2x+11/20=5x+1/4 | | n+(n+1)=10000 | | (4y-15)+(3y+15)=180 | | X/5+1-1/2x+11/20=5x+1/4 | | 16(3x-1)=(12x+6) | | 0.10x+0.25(30-x)=30(0.15) | | 20y+5y=15 | | ((x+0.5)*4-2)/2=48 |

Equations solver categories