(3/x-1)-(1/x+1)=3x

Simple and best practice solution for (3/x-1)-(1/x+1)=3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/x-1)-(1/x+1)=3x equation:



(3/x-1)-(1/x+1)=3x
We move all terms to the left:
(3/x-1)-(1/x+1)-(3x)=0
Domain of the equation: x-1)!=0
x∈R
Domain of the equation: x+1)!=0
x∈R
We add all the numbers together, and all the variables
-3x+(3/x-1)-(1/x+1)=0
We get rid of parentheses
-3x+3/x-1/x-1-1=0
We multiply all the terms by the denominator
-3x*x-1*x-1*x+3-1=0
We add all the numbers together, and all the variables
-2x-3x*x+2=0
Wy multiply elements
-3x^2-2x+2=0
a = -3; b = -2; c = +2;
Δ = b2-4ac
Δ = -22-4·(-3)·2
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{7}}{2*-3}=\frac{2-2\sqrt{7}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{7}}{2*-3}=\frac{2+2\sqrt{7}}{-6} $

See similar equations:

| 5(y−10)=−5 | | (-1x+6)+(x-8)= | | 5(y−10)=-5 | | 3x+2x2=120 | | b÷3=1.5 | | 8x+3=21-4x | | 19-3x=-8x-11 | | 8(x+1)+1=3x+5(2+x) | | (6x-12)4x=180 | | -4(-5x+2)=-168 | | -8x+18=2X-36 | | -4(-5x+2=-168 | | 3x-1-x+1=3x | | 5-(x-6)=10(x+4) | | 5X+2=3x-28 | | 8x^2-194x+200=0 | | -.9p+3.2=1.7p | | 10-m+m+2m=180 | | 2(-3x-3)=0 | | 0.08(y-5)+0.12y=0.18y-0.3 | | b+9=-28 | | 5/9n-3/4=7/9n | | 25u^2-61u+36=0 | | M-10+2m+m=180 | | 19x-2=10x-47 | | (6x+2)-(4x+1)= | | -6(4+4x)=-48 | | 51/2-y=9/4 | | 7/6x+4/3=-1/3 | | 8-3t-6=9t+22-2t | | -10z-0.3=-20z+1.3 | | 6(-7x+9)=-366 |

Equations solver categories