(30+2x)(50+2x)=1900

Simple and best practice solution for (30+2x)(50+2x)=1900 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (30+2x)(50+2x)=1900 equation:



(30+2x)(50+2x)=1900
We move all terms to the left:
(30+2x)(50+2x)-(1900)=0
We add all the numbers together, and all the variables
(2x+30)(2x+50)-1900=0
We multiply parentheses ..
(+4x^2+100x+60x+1500)-1900=0
We get rid of parentheses
4x^2+100x+60x+1500-1900=0
We add all the numbers together, and all the variables
4x^2+160x-400=0
a = 4; b = 160; c = -400;
Δ = b2-4ac
Δ = 1602-4·4·(-400)
Δ = 32000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32000}=\sqrt{6400*5}=\sqrt{6400}*\sqrt{5}=80\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-80\sqrt{5}}{2*4}=\frac{-160-80\sqrt{5}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+80\sqrt{5}}{2*4}=\frac{-160+80\sqrt{5}}{8} $

See similar equations:

| p/6=180 | | 4r/5=8 | | 7+25x=27 | | 12/s=6 | | 4x+7/5=12 | | (B)-10w=14 | | (A)-10w=14 | | 30x+1=59 | | 27x-1=34x-2 | | 80=x+92 | | 4n-15-15=39-15 | | 70=76+x | | 12x-1=8+11x | | 7c+4=2c+19 | | -2+16x=14x+12 | | -5+23x=21x+5 | | x*90+72=2502 | | X2-2x+5=12 | | 18x.5=9 | | x*x*x-25*x-26=0 | | K(x)=-3 | | 9(a+1)=3(4a-5) | | 7x-(2x-1)=16 | | 4x+-12=3x+5 | | -2.1b+5.3=b-3.1b+5.3= | | 11-x=15+x | | 6((25x)^(1/3))-16=14 | | 156-u=44 | | 2x-7=5x-52 | | 0=20x^2+21x+4 | | 40+4x=350 | | 5x^2-52x+64=0 |

Equations solver categories