(30+4x)(50-x)=2000

Simple and best practice solution for (30+4x)(50-x)=2000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (30+4x)(50-x)=2000 equation:



(30+4x)(50-x)=2000
We move all terms to the left:
(30+4x)(50-x)-(2000)=0
We add all the numbers together, and all the variables
(4x+30)(-1x+50)-2000=0
We multiply parentheses ..
(-4x^2+200x-30x+1500)-2000=0
We get rid of parentheses
-4x^2+200x-30x+1500-2000=0
We add all the numbers together, and all the variables
-4x^2+170x-500=0
a = -4; b = 170; c = -500;
Δ = b2-4ac
Δ = 1702-4·(-4)·(-500)
Δ = 20900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20900}=\sqrt{100*209}=\sqrt{100}*\sqrt{209}=10\sqrt{209}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(170)-10\sqrt{209}}{2*-4}=\frac{-170-10\sqrt{209}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(170)+10\sqrt{209}}{2*-4}=\frac{-170+10\sqrt{209}}{-8} $

See similar equations:

| H(3)=-x^ | | H(-1)=-x^ | | (70+4x)(50-x)=2000 | | H(-2)=-x^ | | 6.36x-9.97=9.23 | | F(2)=x^+x | | F(0)=x^+x | | F(-1)=x^+x | | (X+(2+5i))(X+(2-5i))=0 | | 14+13k=-6+16k−16 | | F(-1)=x2+x | | 8n-16=41 | | 7x÷4-3x=3 | | F(1)=-2x+1 | | -7x^2=10-13x | | F(0)=-2x+1 | | F(-1)=-2x+1 | | -7(58+q)=84 | | F(3)=-2x+1 | | 15x-21=5x^2 | | F(-2)=-x+2 | | (1.82)^2x=4 | | 3(2x+3)+2(x+1)=27 | | -2(x-5)=-6x+4(x-2) | | 65y=-273 | | b+3b+32=0 | | 5x+15=35+x | | T(n)=-2n+2 | | 2x=|x-18| | | Y=198-x | | 124m+628=78 | | 4x^2-160x=0 |

Equations solver categories