(30-(2x+6))+(2x+6)=30x2

Simple and best practice solution for (30-(2x+6))+(2x+6)=30x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (30-(2x+6))+(2x+6)=30x2 equation:



(30-(2x+6))+(2x+6)=30x^2
We move all terms to the left:
(30-(2x+6))+(2x+6)-(30x^2)=0
determiningTheFunctionDomain -30x^2+(30-(2x+6))+(2x+6)=0
We get rid of parentheses
-30x^2+(30-(2x+6))+2x+6=0
We calculate terms in parentheses: +(30-(2x+6)), so:
30-(2x+6)
determiningTheFunctionDomain -(2x+6)+30
We get rid of parentheses
-2x-6+30
We add all the numbers together, and all the variables
-2x+24
Back to the equation:
+(-2x+24)
We add all the numbers together, and all the variables
-30x^2+2x+(-2x+24)+6=0
We get rid of parentheses
-30x^2+2x-2x+24+6=0
We add all the numbers together, and all the variables
-30x^2+30=0
a = -30; b = 0; c = +30;
Δ = b2-4ac
Δ = 02-4·(-30)·30
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3600}=60$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*-30}=\frac{-60}{-60} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*-30}=\frac{60}{-60} =-1 $

See similar equations:

| b÷6+5=10 | | 10-1/4x=-2 | | 6/x+2=0.75 | | (30-(2x+6))+(2x+6)=30 | | 4x-20+18=6x+6 | | x+3/5=-13 | | 7x^2-23=20 | | 2(-m-4)=4m+16 | | 2+0.25x=-8+1.5x | | 2+0.25x=0 | | 3z-39=-16 | | 2x-17=3x-4 | | 3x+57=76-4x | | 81=u/3 | | 3x+76=57-4x | | 18=13-2x | | 25-(-8+9(x)=0 | | 9x^2+8x-11=0 | | 4m-11=0 | | 8r^2-r-9=0 | | (2x/3)-(8x/2)=5 | | 3p^2+6p+3=0 | | 8x=142 | | 6w^2-9w+8=0 | | x+(x*18/100)=550 | | 3y-15=15.Y= | | 3x^2+32x+69=0 | | 13/7(x+1)=53/14-2x | | 5(r-5)=-r+17+2r | | 4p+12=-48 | | 1.4x+4.4=0.8x+1.46 | | X/4-x/7=-2 |

Equations solver categories