(300-10x)(3.5+.1x)=x

Simple and best practice solution for (300-10x)(3.5+.1x)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (300-10x)(3.5+.1x)=x equation:



(300-10x)(3.5+.1x)=x
We move all terms to the left:
(300-10x)(3.5+.1x)-(x)=0
We add all the numbers together, and all the variables
(-10x+300)(.1x+3.5)-x=0
We add all the numbers together, and all the variables
-1x+(-10x+300)(.1x+3.5)=0
We multiply parentheses ..
(-10x^2-35x+300x+1050)-1x=0
We get rid of parentheses
-10x^2-35x+300x-1x+1050=0
We add all the numbers together, and all the variables
-10x^2+264x+1050=0
a = -10; b = 264; c = +1050;
Δ = b2-4ac
Δ = 2642-4·(-10)·1050
Δ = 111696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{111696}=\sqrt{16*6981}=\sqrt{16}*\sqrt{6981}=4\sqrt{6981}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(264)-4\sqrt{6981}}{2*-10}=\frac{-264-4\sqrt{6981}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(264)+4\sqrt{6981}}{2*-10}=\frac{-264+4\sqrt{6981}}{-20} $

See similar equations:

| 3nn=2 | | 16+8h=136 | | 8/u=56/105 | | 4b=2=18 | | 2*3^x=162 | | 2=11+u | | w/7+7.2=-10.3 | | (300-10x)=(3.5+.1x) | | 4/7x+13=6/7x-3 | | j/10-38=39 | | 4(g-90)=24 | | (5+3)j=24*2 | | 19.00a+4.50=13.00+5.75a | | 6-2c+9c=7c+6 | | 6=c/8 | | 3/4x+1/2=5/6x-1 | | 9x+9=9(x-5) | | –3x+9=24 | | x/4+2=-14 | | x/3+6.4=-1.1 | | 6n^2=104-2n | | -2c+3=-7 | | 10x-(2x+9)=-3(x-13) | | +3-5x=+15-2x | | 3t+49=t+73 | | h/3+11=15 | | 1/5(x+4)-8=3/5*x-2 | | 7x-(6x+2)=2x-41 | | 3n-2/5=5n-8/6 | | 11w=8+7w | | -4y-15=6y+25 | | 11c=4c+35 |

Equations solver categories