(31/4)p=2/12

Simple and best practice solution for (31/4)p=2/12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (31/4)p=2/12 equation:



(31/4)p=2/12
We move all terms to the left:
(31/4)p-(2/12)=0
Domain of the equation: 4)p!=0
p!=0/1
p!=0
p∈R
We add all the numbers together, and all the variables
(+31/4)p-(+2/12)=0
We multiply parentheses
31p^2-(+2/12)=0
We get rid of parentheses
31p^2-2/12=0
We multiply all the terms by the denominator
31p^2*12-2=0
Wy multiply elements
372p^2-2=0
a = 372; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·372·(-2)
Δ = 2976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2976}=\sqrt{16*186}=\sqrt{16}*\sqrt{186}=4\sqrt{186}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{186}}{2*372}=\frac{0-4\sqrt{186}}{744} =-\frac{4\sqrt{186}}{744} =-\frac{\sqrt{186}}{186} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{186}}{2*372}=\frac{0+4\sqrt{186}}{744} =\frac{4\sqrt{186}}{744} =\frac{\sqrt{186}}{186} $

See similar equations:

| p/4=16=17 | | w/9+2=-7 | | 3(2x+4)=10x-(x-6) | | 5w/9=10 | | 5(a+6)=-15 | | 10×20=8×d2 | | -3=m/4+7 | | -4v+10v=-18 | | 3x^2+27x=1 | | -4.8x=-14.4 | | -4(s-5)-1=31 | | c+137=542 | | y=3^-2 | | 9a-20a=-11 | | x/2-10=-10 | | 2/6(6x-9)=-34 | | h-494=-131 | | 3x^2+27x-1=0 | | 82-2x+2x+98=180 | | 6x-2x.x=-16 | | 2(x-5)=3(2x-6) | | 3x^2+27x11=0 | | 9x-4(x-2)=x+29 | | -2f+6=4–(3f–2) | | 5k+k+4=16 | | -4+20=-6x+2x.x | | 6x-3+6x=18 | | t+1=96 | | 3z+2z+3=18 | | 4.2x−1.4=2.1 | | 4x​2​​+48x+128=0 | | v+24=88 |

Equations solver categories