(32x+x)(x)=(3x)(3x+8)

Simple and best practice solution for (32x+x)(x)=(3x)(3x+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (32x+x)(x)=(3x)(3x+8) equation:



(32x+x)(x)=(3x)(3x+8)
We move all terms to the left:
(32x+x)(x)-((3x)(3x+8))=0
We add all the numbers together, and all the variables
(+33x)x-(3x(3x+8))=0
We multiply parentheses
33x^2-(3x(3x+8))=0
We calculate terms in parentheses: -(3x(3x+8)), so:
3x(3x+8)
We multiply parentheses
9x^2+24x
Back to the equation:
-(9x^2+24x)
We get rid of parentheses
33x^2-9x^2-24x=0
We add all the numbers together, and all the variables
24x^2-24x=0
a = 24; b = -24; c = 0;
Δ = b2-4ac
Δ = -242-4·24·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24}{2*24}=\frac{0}{48} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24}{2*24}=\frac{48}{48} =1 $

See similar equations:

| 2y^2-34y+120=0 | | 9(m+5)=15 | | ((2x-7)/6)+3=27 | | 3c^2+10c-5=0 | | 9(7x–2)–10=36 | | 5(3x–1)+3=13 | | 3c2+5c-4=0 | | |-7x-8|=1 | | X=7+(5r) | | 3c^2+5c-4=0 | | 4*c=64 | | 3x÷5x+2=4÷1 | | -16x^2+89x+6=0 | | -16x^2-89x+6=0 | | (6x-6)/(x)*(9x^2/8x-8)=0 | | ((6x-6)/(x))*((9x^2/8x-8))=0 | | 4+x+17=45-5 | | 7x^2+13-2=0 | | 2=6+2(x+5) | | 7-2p-9=10 | | 2(3k-5)=20 | | 10=4x-10+x | | (3v-7)(3v-7)=0 | | (x+8)^2=-81 | | y/4+12=-8 | | -6w-12=51 | | 8x+12+4x+8=9x-11 | | (8x/x-6)-(48/x-6)=0 | | 19-7x=5/3x+6 | | -5x=1-2(x | | X/3-25=3x-21 | | 4p+3/7=5p+3/7 |

Equations solver categories