(36+2x)(30+2x)=1880

Simple and best practice solution for (36+2x)(30+2x)=1880 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (36+2x)(30+2x)=1880 equation:



(36+2x)(30+2x)=1880
We move all terms to the left:
(36+2x)(30+2x)-(1880)=0
We add all the numbers together, and all the variables
(2x+36)(2x+30)-1880=0
We multiply parentheses ..
(+4x^2+60x+72x+1080)-1880=0
We get rid of parentheses
4x^2+60x+72x+1080-1880=0
We add all the numbers together, and all the variables
4x^2+132x-800=0
a = 4; b = 132; c = -800;
Δ = b2-4ac
Δ = 1322-4·4·(-800)
Δ = 30224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{30224}=\sqrt{16*1889}=\sqrt{16}*\sqrt{1889}=4\sqrt{1889}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(132)-4\sqrt{1889}}{2*4}=\frac{-132-4\sqrt{1889}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(132)+4\sqrt{1889}}{2*4}=\frac{-132+4\sqrt{1889}}{8} $

See similar equations:

| -1/3=x-(-1)/4 | | |5x+2|=12 | | 7-10x=6x+ | | -20h-8=20h+16 | | 5w+7=42 | | 9v-4=68 | | 11z+2=68 | | 3/5+x=-8/5 | | 5+4x=20-x | | x=√-7x+28 | | 3(3x−8)=4x+6. | | 6+4x=-x+8-2 | | 5x/9=40 | | −3(3x−2)−3x−1=  −103 | | 3Гx=2 | | x+x-3=24 | | x^2(x^2-81)-64(x^2-81)=0 | | -1/8(3n+4)=10 | | 4x+x+5x=77 | | 3(3x−8)=4x+6 | | -11t=20 | | (36+2x)(30+2x)=800 | | 8/9k-2/3=5+3/7k | | 5/6=1/4+d | | 1/3(2m-4)=5 | | 7-75=-25+5d | | 2y=15y-46 | | 75=7-5n | | (z+1)/4=5 | | 3(4-2x)=-2(x+5) | | (2^(x))+(2^(-x))=17/4 | | b+3/2b+(2b-90)+(b+45)+90=540 |

Equations solver categories