(36+2x)(30+2x)=800

Simple and best practice solution for (36+2x)(30+2x)=800 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (36+2x)(30+2x)=800 equation:



(36+2x)(30+2x)=800
We move all terms to the left:
(36+2x)(30+2x)-(800)=0
We add all the numbers together, and all the variables
(2x+36)(2x+30)-800=0
We multiply parentheses ..
(+4x^2+60x+72x+1080)-800=0
We get rid of parentheses
4x^2+60x+72x+1080-800=0
We add all the numbers together, and all the variables
4x^2+132x+280=0
a = 4; b = 132; c = +280;
Δ = b2-4ac
Δ = 1322-4·4·280
Δ = 12944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12944}=\sqrt{16*809}=\sqrt{16}*\sqrt{809}=4\sqrt{809}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(132)-4\sqrt{809}}{2*4}=\frac{-132-4\sqrt{809}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(132)+4\sqrt{809}}{2*4}=\frac{-132+4\sqrt{809}}{8} $

See similar equations:

| 8/9k-2/3=5+3/7k | | 5/6=1/4+d | | 1/3(2m-4)=5 | | 7-75=-25+5d | | 2y=15y-46 | | 75=7-5n | | (z+1)/4=5 | | 3(4-2x)=-2(x+5) | | (2^(x))+(2^(-x))=17/4 | | b+3/2b+(2b-90)+(b+45)+90=540 | | 57(32)=57+b | | 5.x-6=29 | | 720=x+120+120+100(x+10) | | 0.25+0.75(10-x)=3 | | 3.5x-80=360 | | (2x+2)+(3x8)=90 | | A(b)=57+b | | x+3+x=3+2x-6+2x-6=26 | | -3x+65=180 | | -4/3u-1/4u=-1/3-3/2 | | 17/12=5x/6 | | 4+7p=-7p-8(2p-8 | | 1.5+t=0.50 | | (17/12)=(5/6((x) | | -3x=5=2 | | 60+42.95x=25+49.5x | | -2x=2x+2+3 | | 3x+7+2x+3+70=180 | | -2x-6=15 | | (x/2)+(x/6)=-4 | | 3=3y-13 | | -147=-3(7b-7) |

Equations solver categories