(360/y-3)(y+4)=360

Simple and best practice solution for (360/y-3)(y+4)=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (360/y-3)(y+4)=360 equation:



(360/y-3)(y+4)=360
We move all terms to the left:
(360/y-3)(y+4)-(360)=0
Domain of the equation: y-3)(y+4)!=0
y∈R
We multiply parentheses ..
(+360y^2+1440y-3y-12)-360=0
We get rid of parentheses
360y^2+1440y-3y-12-360=0
We add all the numbers together, and all the variables
360y^2+1437y-372=0
a = 360; b = 1437; c = -372;
Δ = b2-4ac
Δ = 14372-4·360·(-372)
Δ = 2600649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2600649}=\sqrt{9*288961}=\sqrt{9}*\sqrt{288961}=3\sqrt{288961}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1437)-3\sqrt{288961}}{2*360}=\frac{-1437-3\sqrt{288961}}{720} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1437)+3\sqrt{288961}}{2*360}=\frac{-1437+3\sqrt{288961}}{720} $

See similar equations:

| 7x+35x3=0 | | X^2+25x-625=0 | | x4=8x+7 | | 10x-10=-100 | | t÷5-2=9 | | 3x-6=4x+11 | | 4x+12x-8x=56+36 | | 310=a40 | | 48x-16x^2=28 | | P(H|B)=0.006p/(0.006p+0.04) | | x=(x+30) | | D^2(D^2+4)=96x^2 | | 22n/7=3.1 | | X+5x-2x=20 | | X=3x+5=105 | | X+5x-2x=40 | | 30+2x=120 | | 9t-4=-32 | | 4•27/7-2y=6 | | 4(27/7)-2y=6 | | 7x+43=148 | | 5=y/2=3(y+7) | | 7t=+t | | x4-2x2+12x-8=0 | | 12/11+9y=-7 | | -x+2x=4-10 | | f(-2)=(-2^2)-2(-2) | | (X+2.5)-1/5(x-4.2)=2+x | | 6x+30+50-395/11=180 | | 2x^2-20x+360=0 | | X+2x=+11-2 | | 7x-12x=-18-2 |

Equations solver categories