(37/9)v=17/18

Simple and best practice solution for (37/9)v=17/18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (37/9)v=17/18 equation:



(37/9)v=17/18
We move all terms to the left:
(37/9)v-(17/18)=0
Domain of the equation: 9)v!=0
v!=0/1
v!=0
v∈R
We add all the numbers together, and all the variables
(+37/9)v-(+17/18)=0
We multiply parentheses
37v^2-(+17/18)=0
We get rid of parentheses
37v^2-17/18=0
We multiply all the terms by the denominator
37v^2*18-17=0
Wy multiply elements
666v^2-17=0
a = 666; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·666·(-17)
Δ = 45288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{45288}=\sqrt{36*1258}=\sqrt{36}*\sqrt{1258}=6\sqrt{1258}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{1258}}{2*666}=\frac{0-6\sqrt{1258}}{1332} =-\frac{6\sqrt{1258}}{1332} =-\frac{\sqrt{1258}}{222} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{1258}}{2*666}=\frac{0+6\sqrt{1258}}{1332} =\frac{6\sqrt{1258}}{1332} =\frac{\sqrt{1258}}{222} $

See similar equations:

| 2(x=5)=10 | | 2x2-1=x2+24 | | 3x-2(-3+6x)=2x | | 5+v=11 | | 2x+14=236,x= | | 100+x+140+2x=360 | | b-4=-3(-3) | | 28+97x=180 | | 43m=–m+53m+3 | | 28+97=180x | | 19=x+20 | | X-15+2x-40+x+15=180 | | 18=-5x(-3x+15) | | x/4+20=100 | | q-17=6-14 | | -24=3-3b | | 28x+97=180 | | -9.9n-9.5=112.27 | | -4x+13=6(x+7) | | 3–5(b^2–6b+10)–=8b^2 | | -3(2x+4)=-7x-6 | | X/2+120+x/3=180 | | 2.4x=1 | | 3a=-15a= | | 1(19c+30)= | | 4x–2x–3=3x+2 | | 7z+13=5z | | 3x+5x/2+48=180 | | -24x+24=-18 | | 1x(0x)=1 | | 1-1/x=-6x | | x.3/12=x/56 |

Equations solver categories