If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(382/24)-(114/23)*x-(3675x)=92+35
We move all terms to the left:
(382/24)-(114/23)*x-(3675x)-(92+35)=0
Domain of the equation: 23)*x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-(+114/23)*x-3675x+(+382/24)-127=0
We add all the numbers together, and all the variables
-3675x-(+114/23)*x-127+(+382/24)=0
We multiply parentheses
-114x^2-3675x-127+(+382/24)=0
We get rid of parentheses
-114x^2-3675x-127+382/24=0
We multiply all the terms by the denominator
-114x^2*24-3675x*24+382-127*24=0
We add all the numbers together, and all the variables
-114x^2*24-3675x*24-2666=0
Wy multiply elements
-2736x^2-88200x-2666=0
a = -2736; b = -88200; c = -2666;
Δ = b2-4ac
Δ = -882002-4·(-2736)·(-2666)
Δ = 7750063296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7750063296}=\sqrt{576*13454971}=\sqrt{576}*\sqrt{13454971}=24\sqrt{13454971}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-88200)-24\sqrt{13454971}}{2*-2736}=\frac{88200-24\sqrt{13454971}}{-5472} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-88200)+24\sqrt{13454971}}{2*-2736}=\frac{88200+24\sqrt{13454971}}{-5472} $
| Y=14x+3/8 | | 2736x^2+88200x+1826=0 | | -5/7=35/x | | 5-9x=10(2-3x) | | 67.5=75x | | -3a2-1+4=0 | | 2b+4=9 | | 60.48=7.2x | | (382/24)-(114/23)*x-(3675x)=307 | | 6x+4=30+16 | | 2.5a=-15 | | 5-3x=18+3x | | 1/2(6y)y=9 | | 3y.Y=12 | | (x-(4-1))-70=70-(x-(4-1)) | | 10m^2+9m-162=0 | | 3(7-2(7x-4))=-42x+45 | | y^2+11y+22=0 | | 6(x-3)=81/9-3(x-6) | | -3(3-2x)=15-(4-2x) | | -3(3-2x)=15-(4-2x | | -37-x=5x-74 | | 4x-(9)=0 | | 7x=-954-2x | | 3t^2-3/4=0 | | -3t^2+3-15/4=0 | | 1/2t-(3t/2)-2/t=-(15/4) | | (21x-12)+(10x+9)+(8x)=270 | | 9x+16=4x-10 | | 6b+1=26-2b | | (X-3)2+(y-9)2=81 | | 25=y=-10 |