(382/24)-(114/23)*x=0

Simple and best practice solution for (382/24)-(114/23)*x=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (382/24)-(114/23)*x=0 equation:



(382/24)-(114/23)*x=0
Domain of the equation: 23)*x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-(+114/23)*x+(+382/24)=0
We multiply parentheses
-114x^2+(+382/24)=0
We get rid of parentheses
-114x^2+382/24=0
We multiply all the terms by the denominator
-114x^2*24+382=0
Wy multiply elements
-2736x^2+382=0
a = -2736; b = 0; c = +382;
Δ = b2-4ac
Δ = 02-4·(-2736)·382
Δ = 4180608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4180608}=\sqrt{576*7258}=\sqrt{576}*\sqrt{7258}=24\sqrt{7258}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{7258}}{2*-2736}=\frac{0-24\sqrt{7258}}{-5472} =-\frac{24\sqrt{7258}}{-5472} =-\frac{\sqrt{7258}}{-228} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{7258}}{2*-2736}=\frac{0+24\sqrt{7258}}{-5472} =\frac{24\sqrt{7258}}{-5472} =\frac{\sqrt{7258}}{-228} $

See similar equations:

| (382/24)=(114/23)*x | | (382/24)*x=114/23 | | (382/24)x=114/23 | | 382/24+x=114/23 | | 382/24=x | | x^2+(2x)^2=100 | | 7/17=12/y | | (6x+18)/(2x+3)=1 | | 114*(x-23)-(3675/23)=0 | | 7+3x/4=-2 | | 3(f-9)+10(f-11)=90 | | 3^(3x)=27 | | 114x+307=23 | | 23x+307=23 | | z+(-9)=4 | | 6(2-a)=9(a-4) | | -15=37b | | (30/140)=(100/x) | | x=((12/9)/2)^2 | | 9^(x+7)=81 | | P(1x)=3x-5 | | 9(6s-5)=54s-45 | | y=40+3*6 | | y=45+2*6 | | 8n+(9n-5)=360 | | J=3k-I | | 8-(4-4n)+17n=-6+18(n+1) | | -2(x+4)=-35 | | 5a+26=3a+26 | | 7x=784 | | (2x+13)(x-7)=0 | | 5a+7=2a+47 |

Equations solver categories