If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(382/24)x=114/23
We move all terms to the left:
(382/24)x-(114/23)=0
Domain of the equation: 24)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+382/24)x-(+114/23)=0
We multiply parentheses
382x^2-(+114/23)=0
We get rid of parentheses
382x^2-114/23=0
We multiply all the terms by the denominator
382x^2*23-114=0
Wy multiply elements
8786x^2-114=0
a = 8786; b = 0; c = -114;
Δ = b2-4ac
Δ = 02-4·8786·(-114)
Δ = 4006416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4006416}=\sqrt{16*250401}=\sqrt{16}*\sqrt{250401}=4\sqrt{250401}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{250401}}{2*8786}=\frac{0-4\sqrt{250401}}{17572} =-\frac{4\sqrt{250401}}{17572} =-\frac{\sqrt{250401}}{4393} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{250401}}{2*8786}=\frac{0+4\sqrt{250401}}{17572} =\frac{4\sqrt{250401}}{17572} =\frac{\sqrt{250401}}{4393} $
| 382/24+x=114/23 | | 382/24=x | | x^2+(2x)^2=100 | | 7/17=12/y | | (6x+18)/(2x+3)=1 | | 114*(x-23)-(3675/23)=0 | | 7+3x/4=-2 | | 3(f-9)+10(f-11)=90 | | 3^(3x)=27 | | 114x+307=23 | | 23x+307=23 | | z+(-9)=4 | | 6(2-a)=9(a-4) | | -15=37b | | (30/140)=(100/x) | | x=((12/9)/2)^2 | | 9^(x+7)=81 | | P(1x)=3x-5 | | 9(6s-5)=54s-45 | | y=40+3*6 | | y=45+2*6 | | 8n+(9n-5)=360 | | J=3k-I | | 8-(4-4n)+17n=-6+18(n+1) | | -2(x+4)=-35 | | 5a+26=3a+26 | | 7x=784 | | (2x+13)(x-7)=0 | | 5a+7=2a+47 | | 4c-5+14c=87 | | x^2-x+1=2x1 | | x2+19=6.5x |