(39)(24)=(2x-4)(x+6)

Simple and best practice solution for (39)(24)=(2x-4)(x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (39)(24)=(2x-4)(x+6) equation:



(39)(24)=(2x-4)(x+6)
We move all terms to the left:
(39)(24)-((2x-4)(x+6))=0
We multiply parentheses ..
-((+2x^2+12x-4x-24))+3924=0
We calculate terms in parentheses: -((+2x^2+12x-4x-24)), so:
(+2x^2+12x-4x-24)
We get rid of parentheses
2x^2+12x-4x-24
We add all the numbers together, and all the variables
2x^2+8x-24
Back to the equation:
-(2x^2+8x-24)
We get rid of parentheses
-2x^2-8x+24+3924=0
We add all the numbers together, and all the variables
-2x^2-8x+3948=0
a = -2; b = -8; c = +3948;
Δ = b2-4ac
Δ = -82-4·(-2)·3948
Δ = 31648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{31648}=\sqrt{16*1978}=\sqrt{16}*\sqrt{1978}=4\sqrt{1978}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{1978}}{2*-2}=\frac{8-4\sqrt{1978}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{1978}}{2*-2}=\frac{8+4\sqrt{1978}}{-4} $

See similar equations:

| x+2x+(2x-20)=100 | | 6-m-8=0 | | m^-2m-8=0 | | m/3=2.79 | | 10y-5=135 | | 5x+-15=50 | | 5.73=t-9 | | -10−7m=-8m | | 1/2(6x+10)=5x+13 | | 814843x+3142566=238 | | -w+6-1=2 | | 560+6k=-6+-7(9k+2) | | 2x+6x+4x-6+2x-16+6x+2=180 | | 13/10x=9 | | n/23=332 | | -1=-4/4(4)+b | | -8=w/4-4 | | s+3.1=9.74 | | 28=y/4+10 | | 12x=X+8+25 | | x+(432*4)/2-301=3504 | | X+33=16x | | 11y+27=180 | | -4+v=8 | | -w-4=-2 | | 13x^2+117=0 | | X+5+25=8x | | -9=w+7 | | 4(x-3)/2=4(x+1)/10 | | 4x-5+7x-6+3x-5=180 | | 8x=x+30 | | 14x+55=238 |

Equations solver categories