(3T-8)+((9+T))x2=58

Simple and best practice solution for (3T-8)+((9+T))x2=58 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3T-8)+((9+T))x2=58 equation:



(3-8)+((9+))T2=58
We move all terms to the left:
(3-8)+((9+))T2-(58)=0
determiningTheFunctionDomain ((9+))T2-58+(3-8)=0
We add all the numbers together, and all the variables
(0)T2-58+(-5)=0
We add all the numbers together, and all the variables
T^2-63=0
a = 1; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·1·(-63)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{7}}{2*1}=\frac{0-6\sqrt{7}}{2} =-\frac{6\sqrt{7}}{2} =-3\sqrt{7} $
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{7}}{2*1}=\frac{0+6\sqrt{7}}{2} =\frac{6\sqrt{7}}{2} =3\sqrt{7} $

See similar equations:

| -4.75=y/2 | | -0.25y=-1.25 | | 77x+42=196 | | 44x-26=238 | | (1343)2x+1=(17)x+1 | | 15÷8x=47 | | 44x-26=280 | | 14×n=182 | | X-5y=14.5 | | 61x+31=336 | | F=2r-3 | | 33x-18=114 | | 14+t=33 | | 10x+2=-10 | | 42x-9=327 | | 3x-3=-2(3-x) | | 490-56=6x | | 8^(7x+9)=2^(3x+6) | | 6-3=9x+6 | | 2x+150=5x+20 | | 14+2x=-3x-114+2x=−3x−1 | | 70(8x+7)-35=6 | | 5x-1=71 | | 3(x+6)^2=192 | | 4(8x-4)-6=10 | | 2y-8-6y+17=25+10y | | ‐6x‐2x=16 | | 8(4x-2)-9=20 | | Y=10+y=22 | | 3(x+6)^2-8=184 | | 6x+x=15+3 | | 5x-2x+1=5x+2 |

Equations solver categories