(3W-10)*W=300

Simple and best practice solution for (3W-10)*W=300 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3W-10)*W=300 equation:


Simplifying
(3W + -10) * W = 300

Reorder the terms:
(-10 + 3W) * W = 300

Reorder the terms for easier multiplication:
W(-10 + 3W) = 300
(-10 * W + 3W * W) = 300
(-10W + 3W2) = 300

Solving
-10W + 3W2 = 300

Solving for variable 'W'.

Reorder the terms:
-300 + -10W + 3W2 = 300 + -300

Combine like terms: 300 + -300 = 0
-300 + -10W + 3W2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-100 + -3.333333333W + W2 = 0

Move the constant term to the right:

Add '100' to each side of the equation.
-100 + -3.333333333W + 100 + W2 = 0 + 100

Reorder the terms:
-100 + 100 + -3.333333333W + W2 = 0 + 100

Combine like terms: -100 + 100 = 0
0 + -3.333333333W + W2 = 0 + 100
-3.333333333W + W2 = 0 + 100

Combine like terms: 0 + 100 = 100
-3.333333333W + W2 = 100

The W term is -3.333333333W.  Take half its coefficient (-1.666666667).
Square it (2.777777779) and add it to both sides.

Add '2.777777779' to each side of the equation.
-3.333333333W + 2.777777779 + W2 = 100 + 2.777777779

Reorder the terms:
2.777777779 + -3.333333333W + W2 = 100 + 2.777777779

Combine like terms: 100 + 2.777777779 = 102.777777779
2.777777779 + -3.333333333W + W2 = 102.777777779

Factor a perfect square on the left side:
(W + -1.666666667)(W + -1.666666667) = 102.777777779

Calculate the square root of the right side: 10.137937551

Break this problem into two subproblems by setting 
(W + -1.666666667) equal to 10.137937551 and -10.137937551.

Subproblem 1

W + -1.666666667 = 10.137937551 Simplifying W + -1.666666667 = 10.137937551 Reorder the terms: -1.666666667 + W = 10.137937551 Solving -1.666666667 + W = 10.137937551 Solving for variable 'W'. Move all terms containing W to the left, all other terms to the right. Add '1.666666667' to each side of the equation. -1.666666667 + 1.666666667 + W = 10.137937551 + 1.666666667 Combine like terms: -1.666666667 + 1.666666667 = 0.000000000 0.000000000 + W = 10.137937551 + 1.666666667 W = 10.137937551 + 1.666666667 Combine like terms: 10.137937551 + 1.666666667 = 11.804604218 W = 11.804604218 Simplifying W = 11.804604218

Subproblem 2

W + -1.666666667 = -10.137937551 Simplifying W + -1.666666667 = -10.137937551 Reorder the terms: -1.666666667 + W = -10.137937551 Solving -1.666666667 + W = -10.137937551 Solving for variable 'W'. Move all terms containing W to the left, all other terms to the right. Add '1.666666667' to each side of the equation. -1.666666667 + 1.666666667 + W = -10.137937551 + 1.666666667 Combine like terms: -1.666666667 + 1.666666667 = 0.000000000 0.000000000 + W = -10.137937551 + 1.666666667 W = -10.137937551 + 1.666666667 Combine like terms: -10.137937551 + 1.666666667 = -8.471270884 W = -8.471270884 Simplifying W = -8.471270884

Solution

The solution to the problem is based on the solutions from the subproblems. W = {11.804604218, -8.471270884}

See similar equations:

| ln(x+3)+ln(3x+1)=10 | | (-3x)+5=-4 | | -15-3= | | 803=x+0.05y | | 803=x+0.5y | | 4x-2=6x+8 | | 0.3x^2-1.2x-0.3=0 | | -2(3n+3)=2 | | 0=((-16t)(-16t))+20t+1200 | | h=((-16t)(-16t))+20t+1200 | | x^2+19x+10=0 | | 5p^2+26p+5=0 | | x(6x-7)=(6x+6)(x-2) | | (f)=x^2-8+15 | | 12p-15p-8=0 | | 684+3600=x | | 7+7y-3=6Y+16-2y | | -z-6z+3=-(6-z-(3-2z)) | | x=684 | | 7x=40 | | x^2=13x-29 | | 3(4z-1)-2(z+3)=4(z+1) | | y+10=2y-20 | | 5x^2=-13x-6 | | 4+8n=5n+4 | | -5x^2=-13x-6 | | 5-p+11+2p=25 | | x-8=49 | | 7x-15-6x=31 | | 2x+6=50 | | 9p+2=8+8p | | 6ln(6x)=54 |

Equations solver categories