If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3b + -5)(4b + 1) = 0 Reorder the terms: (-5 + 3b)(4b + 1) = 0 Reorder the terms: (-5 + 3b)(1 + 4b) = 0 Multiply (-5 + 3b) * (1 + 4b) (-5(1 + 4b) + 3b * (1 + 4b)) = 0 ((1 * -5 + 4b * -5) + 3b * (1 + 4b)) = 0 ((-5 + -20b) + 3b * (1 + 4b)) = 0 (-5 + -20b + (1 * 3b + 4b * 3b)) = 0 (-5 + -20b + (3b + 12b2)) = 0 Combine like terms: -20b + 3b = -17b (-5 + -17b + 12b2) = 0 Solving -5 + -17b + 12b2 = 0 Solving for variable 'b'. Factor a trinomial. (-1 + -4b)(5 + -3b) = 0Subproblem 1
Set the factor '(-1 + -4b)' equal to zero and attempt to solve: Simplifying -1 + -4b = 0 Solving -1 + -4b = 0 Move all terms containing b to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + -4b = 0 + 1 Combine like terms: -1 + 1 = 0 0 + -4b = 0 + 1 -4b = 0 + 1 Combine like terms: 0 + 1 = 1 -4b = 1 Divide each side by '-4'. b = -0.25 Simplifying b = -0.25Subproblem 2
Set the factor '(5 + -3b)' equal to zero and attempt to solve: Simplifying 5 + -3b = 0 Solving 5 + -3b = 0 Move all terms containing b to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + -3b = 0 + -5 Combine like terms: 5 + -5 = 0 0 + -3b = 0 + -5 -3b = 0 + -5 Combine like terms: 0 + -5 = -5 -3b = -5 Divide each side by '-3'. b = 1.666666667 Simplifying b = 1.666666667Solution
b = {-0.25, 1.666666667}
| 10.5*(3(15-1)2+3(15-1)+1)=x | | 10.5*(3(15-1)2+3(15-1)+1)= | | 5*(3(15-1)2+3(15-1)+1)=X | | 7m-12=-33 | | 8x+4-2=26 | | -5x^2-4x+2=0 | | (2-2y)*((2-x)/2)=0 | | -3(8p+4)-2(1-23p)=3(6+7p) | | (2-2y)*((2-x)/2) | | x=1.01255555555555 | | 2-2y+2y-2=0 | | x=-1.01255555555555 | | 7/5x-10=3 | | 6[x+4(2-x)]=3x+1 | | 5t^2+2t+0.1=0 | | 3x+7-5(x+1)=5x+7 | | 4/3(3.14)(11)3 | | P=pr^2+prs | | .07x=1400 | | 0.7x=1400 | | (11b-2)-5(2b+1)=-7 | | 5+20x=y | | 10y/7=14 | | 77760+0.10x+0.15x=x | | 10y=14*7 | | 0.10x+0.15x=x | | 2.7+3w=6-8w | | h=3+5t-5y^2 | | -n=-120 | | 10-10d+3=6d+4 | | 315/5= | | 6x^2y+12xy^2= |