If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3k-1)(3k+1)=0
We use the square of the difference formula
9k^2-1=0
a = 9; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·9·(-1)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6}{2*9}=\frac{-6}{18} =-1/3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6}{2*9}=\frac{6}{18} =1/3 $
| (3k-1)(3k+3)=0 | | 13-5x+2=25+10x+ | | 6x-3x+4-2x=8x+6 | | 3x^2-19x-24=0 | | R(x)=-20x^2+1400x+36000 | | +4y=56 | | x+7x/10=90 | | x2+2x=23 | | (5t+t)^2=0 | | 4x^-372x-228=0 | | 2a^2-4a-7a+2a^2+6a-14=0 | | 9(x+13)=x-45 | | -3x+2|5+1=-5x|6 | | 2a^2+2a^2=0 | | 5x-32=75/98 | | x+x/3+2x=90 | | a(a^2)=0 | | 2n+n/2=15 | | -3x+2/5+1=-5x/6 | | (a+2)(a^2-3a-7)=0 | | x^2=-0.49 | | 4x^2+38x-75=0 | | (a+2)(a2-3a-7)=0 | | 4/128=x/28 | | 28+6y=-14 | | (a*2)=0 | | 0.8=0.5+0.55-x | | x-31=9(x+9) | | 7/11=(x/6) | | x+1/3x+2x=90 | | (p-3)(p+5)=0 | | 5n^2-3n=2 |