If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3m+8)m=5
We move all terms to the left:
(3m+8)m-(5)=0
We multiply parentheses
3m^2+8m-5=0
a = 3; b = 8; c = -5;
Δ = b2-4ac
Δ = 82-4·3·(-5)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{31}}{2*3}=\frac{-8-2\sqrt{31}}{6} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{31}}{2*3}=\frac{-8+2\sqrt{31}}{6} $
| 6y–8=4y+26 | | x2–3x=18 | | 9p+7P=11 | | 3y-4+y+20=180 | | x4+x7=−3 | | x+36+55=54 | | x+36+54=55 | | 54x+36=55 | | 55x+36=54 | | 2r+6/8=5r-1/19 | | 2^x*3^(x+1)=108 | | 3r^2-2r+15r=10 | | -(5x-3)-7=6x+5 | | r²=64 | | x^2-5x(3)+6=0 | | 4x-6=15x-15 | | 3m^2-18=6 | | t^²+8t+16=0 | | -4a^2=-20 | | 4v^2=40/5 | | 7x/6-3/6-2x/4-3/4=5/4 | | 4/9v^2=40/45 | | 11(x+7)=0 | | 11(x+7)=0 | | 28-8z=4(z-5) | | 11(x+7) = 0 | | 9t^2=121 | | 51-6z=3(z-4) | | 26.2+37=9y+13 | | 4x-20=5x-14 | | 7v+10=3v+42 | | 0.17(2x-12) = 0 |