If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3n^2-7n)+(7n^2+n=1)
We move all terms to the left:
(3n^2-7n)+(7n^2+n-(1))=0
We get rid of parentheses
3n^2+7n^2-7n+n-1=0
We add all the numbers together, and all the variables
10n^2-6n-1=0
a = 10; b = -6; c = -1;
Δ = b2-4ac
Δ = -62-4·10·(-1)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{19}}{2*10}=\frac{6-2\sqrt{19}}{20} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{19}}{2*10}=\frac{6+2\sqrt{19}}{20} $
| x-6+8x-6+90=180 | | 175-v=9 | | 4−34n=1256 | | a+17=54 | | 7v-4v+v-3v+2v=9 | | 5x2x=9 | | 4x-24=3x-8 | | 3+n=32 | | 7v−4v+v−3v+2v=9 | | 155=-u+289 | | 18r+4r-11r-7r=16 | | X^2+x=1.21 | | 61x+2=62 | | q-4.8=9 | | q+4.8=-9 | | 7x+56=10x+26 | | -2m-4(8m-5)=258 | | 1/2x+1/3x+1/6x+7,2=12,1 | | 1.5t=3275 | | y+4.6=7.54 | | 18c-16c=6 | | 4d-d(2d+2)=0 | | x/120=4/130 | | 1.5*t=3275 | | 4^-3/4^n=1/256 | | x-5-1/3x=2/3x+17-1/6x | | 13d-11d=10 | | 2s+38=13s+5 | | 19x-10x=18 | | h=175(1.028)^5 | | 5(-4x+6)=-70 | | -2(3x-4)+2=-6x+10 |