(3r*1)*(r*2)=65

Simple and best practice solution for (3r*1)*(r*2)=65 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3r*1)*(r*2)=65 equation:



(3r*1)(r*2)=65
We move all terms to the left:
(3r*1)(r*2)-(65)=0
We add all the numbers together, and all the variables
(+3r*1)(+r*2)-65=0
We multiply parentheses ..
(+6r^2)-65=0
We get rid of parentheses
6r^2-65=0
a = 6; b = 0; c = -65;
Δ = b2-4ac
Δ = 02-4·6·(-65)
Δ = 1560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1560}=\sqrt{4*390}=\sqrt{4}*\sqrt{390}=2\sqrt{390}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{390}}{2*6}=\frac{0-2\sqrt{390}}{12} =-\frac{2\sqrt{390}}{12} =-\frac{\sqrt{390}}{6} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{390}}{2*6}=\frac{0+2\sqrt{390}}{12} =\frac{2\sqrt{390}}{12} =\frac{\sqrt{390}}{6} $

See similar equations:

| (1+x)^3.97=1.0533 | | 3^(2x)-9(3^x)+18=0 | | 3c−5=31 | | 30(4)+45(4)=z | | 4=0.3x-0.4x-5 | | (5x3+3)2=(5x3)2+(3)2 | | x/3=-1-(3) | | 11r=15=-2r^2 | | 186=6.2z | | -4=(2-5x)/4 | | -4+7=-3(2y+3) | | −11=−2x+3 | | −10x+2=22 | | 7x−6=29 | | 2x2-15x+27=0 | | y(3y-17)=0 | | 3n(n-2)=0 | | N(9)=2n-1 | | x^2-2x-4=K(x-4) | | (3x-4)(2x+9)=0 | | X/11-7x/11=54/11 | | 2=(2/2x^2) | | 2p-4=3p+6 | | 3x–3=4x+36 | | 4x+36=3x–3 | | -28/27=-4/9*x | | 3x=(5x+6)/(2x+3) | | 2t^2+5t-1=0 | | 27=-9y+9 | | 4x+2=8×+18 | | 6y+6y+360=600 | | 3x+13=35-9x |

Equations solver categories