If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3r + 2)(r + -1) = -1(7r + -7) Reorder the terms: (2 + 3r)(r + -1) = -1(7r + -7) Reorder the terms: (2 + 3r)(-1 + r) = -1(7r + -7) Multiply (2 + 3r) * (-1 + r) (2(-1 + r) + 3r * (-1 + r)) = -1(7r + -7) ((-1 * 2 + r * 2) + 3r * (-1 + r)) = -1(7r + -7) ((-2 + 2r) + 3r * (-1 + r)) = -1(7r + -7) (-2 + 2r + (-1 * 3r + r * 3r)) = -1(7r + -7) (-2 + 2r + (-3r + 3r2)) = -1(7r + -7) Combine like terms: 2r + -3r = -1r (-2 + -1r + 3r2) = -1(7r + -7) Reorder the terms: -2 + -1r + 3r2 = -1(-7 + 7r) -2 + -1r + 3r2 = (-7 * -1 + 7r * -1) -2 + -1r + 3r2 = (7 + -7r) Solving -2 + -1r + 3r2 = 7 + -7r Solving for variable 'r'. Reorder the terms: -2 + -7 + -1r + 7r + 3r2 = 7 + -7r + -7 + 7r Combine like terms: -2 + -7 = -9 -9 + -1r + 7r + 3r2 = 7 + -7r + -7 + 7r Combine like terms: -1r + 7r = 6r -9 + 6r + 3r2 = 7 + -7r + -7 + 7r Reorder the terms: -9 + 6r + 3r2 = 7 + -7 + -7r + 7r Combine like terms: 7 + -7 = 0 -9 + 6r + 3r2 = 0 + -7r + 7r -9 + 6r + 3r2 = -7r + 7r Combine like terms: -7r + 7r = 0 -9 + 6r + 3r2 = 0 Factor out the Greatest Common Factor (GCF), '3'. 3(-3 + 2r + r2) = 0 Factor a trinomial. 3((-3 + -1r)(1 + -1r)) = 0 Ignore the factor 3.Subproblem 1
Set the factor '(-3 + -1r)' equal to zero and attempt to solve: Simplifying -3 + -1r = 0 Solving -3 + -1r = 0 Move all terms containing r to the left, all other terms to the right. Add '3' to each side of the equation. -3 + 3 + -1r = 0 + 3 Combine like terms: -3 + 3 = 0 0 + -1r = 0 + 3 -1r = 0 + 3 Combine like terms: 0 + 3 = 3 -1r = 3 Divide each side by '-1'. r = -3 Simplifying r = -3Subproblem 2
Set the factor '(1 + -1r)' equal to zero and attempt to solve: Simplifying 1 + -1r = 0 Solving 1 + -1r = 0 Move all terms containing r to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + -1r = 0 + -1 Combine like terms: 1 + -1 = 0 0 + -1r = 0 + -1 -1r = 0 + -1 Combine like terms: 0 + -1 = -1 -1r = -1 Divide each side by '-1'. r = 1 Simplifying r = 1Solution
r = {-3, 1}
| 5x-19=7(x-3) | | 8(t+2)-3(t-4)+6(t-7)=8 | | 17+5=y | | 3[6+2(11-6)]= | | -7+40y+12y^2=0 | | 29t+4.9t^2-15=0 | | -3x+2(x-3)+(x^2)x=4 | | -8x-41=15-10x | | 94-8=y | | 2(2x+1)=4+14 | | 5x+2x=350 | | 6a^3+39a^2+45a= | | 4x+3x-2x+x=x+5 | | 2(v^4)y^4(-2y^4)= | | x-88=68-11x | | 3x^2=-6x+105 | | 10x^2+40x+31=0 | | 6y-8+1=y+38 | | 4b+2B-7b=3 | | 3a+1c=163 | | -126+10x=-6x+114 | | 27x^3=75x | | -126+10x=-6+114 | | -10|n+2|=-70 | | -6.5t+15=-9.7 | | -10+2n-6=2n-9 | | 2x^5-15x^4-27x^3= | | 3x+8=2x-9-4x | | 2x+3=3x-13 | | 0.08x+0.12(3x+26000)=45120 | | |r+2|+1=9 | | x^4-5x^2+4= |