(3t+5)(t-3)+(3t+5)(2t+7)=0

Simple and best practice solution for (3t+5)(t-3)+(3t+5)(2t+7)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3t+5)(t-3)+(3t+5)(2t+7)=0 equation:



(3t+5)(t-3)+(3t+5)(2t+7)=0
We multiply parentheses ..
(+3t^2-9t+5t-15)+(3t+5)(2t+7)=0
We get rid of parentheses
3t^2-9t+5t+(3t+5)(2t+7)-15=0
We multiply parentheses ..
3t^2+(+6t^2+21t+10t+35)-9t+5t-15=0
We add all the numbers together, and all the variables
3t^2+(+6t^2+21t+10t+35)-4t-15=0
We get rid of parentheses
3t^2+6t^2+21t+10t-4t+35-15=0
We add all the numbers together, and all the variables
9t^2+27t+20=0
a = 9; b = 27; c = +20;
Δ = b2-4ac
Δ = 272-4·9·20
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-3}{2*9}=\frac{-30}{18} =-1+2/3 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+3}{2*9}=\frac{-24}{18} =-1+1/3 $

See similar equations:

| 3z/8+3=7 | | (4x+15)+2x=180 | | 43+4m+7+90=180 | | x/5=x/7-6 | | 36+64=c | | 4.13=t–4 | | 8y-12÷0.25=2y | | 6^2+8^2=c | | 5(3x-1)-4=x-2 | | 4-xx3=15 | | -2(-4=b)+2=12-(2+2b) | | 12u-10=15 | | 13(x+9)-12=27 | | (-1/2)(4x+2)=-5 | | -26-2x=-5x | | m≥4;m=2 | | h+3.4=5.7 | | 12(x+3)-1=47 | | 509=-6+5(-12x+7) | | 2.5x-3.5=21.5 | | 28=2+4+4x | | -141=-6x+9(3x+3) | | -19+8(12x-15)=-43 | | -14+9(-2x+16)=-14 | | 6(2+3a)-6a=2(1+a) | | 268=-11x+11-12x-19 | | 16=1/7x-4 | | 24=-11+6x+2x-13 | | 180∘4000π=1∘y | | -5x-5+7x=3 | | 8(6i-10)=12 | | -7=8+2x-5x |

Equations solver categories