If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3u+5)(2u-8)=0
We multiply parentheses ..
(+6u^2-24u+10u-40)=0
We get rid of parentheses
6u^2-24u+10u-40=0
We add all the numbers together, and all the variables
6u^2-14u-40=0
a = 6; b = -14; c = -40;
Δ = b2-4ac
Δ = -142-4·6·(-40)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-34}{2*6}=\frac{-20}{12} =-1+2/3 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+34}{2*6}=\frac{48}{12} =4 $
| 4x+12=−4(3−x) | | -1=0.6x+1=5 | | 23x+92=23x+56 | | I3x-3I=-6 | | 3x+9=3(x+3) | | 5x+15x-3=5(4x+7) | | 7x+13x-4=5(4x+5) | | 7x=0.5 | | 5x2+4x=57 | | 24(2−d)+9d=198 | | 4x^2+3x-8x-6=0 | | 3x+x+10=10x-6x+1- | | 3z-1=+2z-1 | | 4x+6x-20=90 | | 55-3x=10x+23 | | -16=3x-4=2 | | 64x+2,136x-40=44(50x+75) | | n−18=8 | | 12=15z-1/5 | | x-2.67=0.83 | | k-9=12 | | 4(20)-5=5y | | x9=117 | | -27=7x-13=8 | | x+4.25=5.2 | | x+4+1/4=5+1/5 | | n(n+1+3=45 | | 2=x+4=9 | | (12x-4)+13x+(9x+12)=11/13/12 | | 4x-40=6x-32 | | 2y-5y=16 | | 4/3x+12=22 |