(3x(15+2x(5+5)))-25=

Simple and best practice solution for (3x(15+2x(5+5)))-25= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x(15+2x(5+5)))-25= equation:


Simplifying
(3x(15 + 2x(5 + 5))) + -25 = 0

Combine like terms: 5 + 5 = 10
(3x(15 + 2x(10))) + -25 = 0

Reorder the terms for easier multiplication:
(3x(15 + 2 * 10x)) + -25 = 0

Multiply 2 * 10
(3x(15 + 20x)) + -25 = 0
((15 * 3x + 20x * 3x)) + -25 = 0
((45x + 60x2)) + -25 = 0
(45x + 60x2) + -25 = 0

Remove parenthesis around (45x + 60x2)
45x + 60x2 + -25 = 0

Reorder the terms:
-25 + 45x + 60x2 = 0

Solving
-25 + 45x + 60x2 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), '5'.
5(-5 + 9x + 12x2) = 0

Ignore the factor 5.

Subproblem 1

Set the factor '(-5 + 9x + 12x2)' equal to zero and attempt to solve: Simplifying -5 + 9x + 12x2 = 0 Solving -5 + 9x + 12x2 = 0 Begin completing the square. Divide all terms by 12 the coefficient of the squared term: Divide each side by '12'. -0.4166666667 + 0.75x + x2 = 0 Move the constant term to the right: Add '0.4166666667' to each side of the equation. -0.4166666667 + 0.75x + 0.4166666667 + x2 = 0 + 0.4166666667 Reorder the terms: -0.4166666667 + 0.4166666667 + 0.75x + x2 = 0 + 0.4166666667 Combine like terms: -0.4166666667 + 0.4166666667 = 0.0000000000 0.0000000000 + 0.75x + x2 = 0 + 0.4166666667 0.75x + x2 = 0 + 0.4166666667 Combine like terms: 0 + 0.4166666667 = 0.4166666667 0.75x + x2 = 0.4166666667 The x term is 0.75x. Take half its coefficient (0.375). Square it (0.140625) and add it to both sides. Add '0.140625' to each side of the equation. 0.75x + 0.140625 + x2 = 0.4166666667 + 0.140625 Reorder the terms: 0.140625 + 0.75x + x2 = 0.4166666667 + 0.140625 Combine like terms: 0.4166666667 + 0.140625 = 0.5572916667 0.140625 + 0.75x + x2 = 0.5572916667 Factor a perfect square on the left side: (x + 0.375)(x + 0.375) = 0.5572916667 Calculate the square root of the right side: 0.746519703 Break this problem into two subproblems by setting (x + 0.375) equal to 0.746519703 and -0.746519703.

Subproblem 1

x + 0.375 = 0.746519703 Simplifying x + 0.375 = 0.746519703 Reorder the terms: 0.375 + x = 0.746519703 Solving 0.375 + x = 0.746519703 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.375' to each side of the equation. 0.375 + -0.375 + x = 0.746519703 + -0.375 Combine like terms: 0.375 + -0.375 = 0.000 0.000 + x = 0.746519703 + -0.375 x = 0.746519703 + -0.375 Combine like terms: 0.746519703 + -0.375 = 0.371519703 x = 0.371519703 Simplifying x = 0.371519703

Subproblem 2

x + 0.375 = -0.746519703 Simplifying x + 0.375 = -0.746519703 Reorder the terms: 0.375 + x = -0.746519703 Solving 0.375 + x = -0.746519703 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.375' to each side of the equation. 0.375 + -0.375 + x = -0.746519703 + -0.375 Combine like terms: 0.375 + -0.375 = 0.000 0.000 + x = -0.746519703 + -0.375 x = -0.746519703 + -0.375 Combine like terms: -0.746519703 + -0.375 = -1.121519703 x = -1.121519703 Simplifying x = -1.121519703

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.371519703, -1.121519703}

Solution

x = {0.371519703, -1.121519703}

See similar equations:

| 5x+6(4x-10)-12=15 | | 180-4y=x+y+79 | | x+2x+3(2x)=225 | | 49x^2+112xy+64y^2=0 | | 1+2+2x=2x+3 | | n^2-6n-4=0 | | -8x-18=30 | | 25i^2-30i+9=0 | | 115-8a=19 | | 12x^2+4y^2-4x+24y+1=0 | | -15x-50=-14x+10+11x | | 12-y=250 | | 15y-15x=6y | | 4x+-3+3=9+3 | | 12=09a | | 4x-3+3=9 | | 24x-3x^2=0 | | 4t+9=11+3t | | -7v-23=-2(5v+1) | | -8x+2=-7x | | -6d=90 | | 9x-44=7x-4 | | x-3-2x=2 | | 12x^2-31xy+20y^2=0 | | 9p^2-7=-5p | | 13+2v-8+6=-7v | | 6(t-2)-76=-12 | | 4r+12=16r+9 | | 20=2h-10 | | 2(5b+2)=44 | | -7d+5=11 | | -30+8m=6(4+3m)+8m |

Equations solver categories